Icarus 207 (2010) 66-81

Contents lists available at ScienceDirect

# Icarus

journal homepage: www.elsevier.com/locate/icarus

# A meteoroid stream survey using the Canadian Meteor Orbit Radar II: Identification of minor showers using a 3D wavelet transform

# P. Brown\*, D.K. Wong, R.J. Weryk, P. Wiegert

Dept. of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada N6A 3K7

#### ARTICLE INFO

Article history: Received 23 July 2009 Revised 29 September 2009 Accepted 7 November 2009 Available online 23 November 2009

Keywords: Meteors Asteroids Comets Radar observations Interplanetary dust

# ABSTRACT

A 7 year survey using the Canadian Meteor Orbit Radar (CMOR), a specular backscattering orbital radar, has produced three million individually measured meteoroid orbits for particles with mean mass near  $10^{-7}$  kg. We apply a 3D wavelet transform to our measured velocity vectors, partitioning them into 1° solar longitude bins while stacking all 7 years of data into a single "virtual" year to search for showers which show annual activity and last for at least 3 days. Our automated stream search algorithm has identified 117 meteor showers. We have recovered 42 of the 45 previously described streams from our first reconnaissance survey (Brown, P., Weryk, R.J., Wong, D.K., Jones, J. [2008]. Icarus 195, 317–339). Removing possible duplicate showers from the automated results leaves 109 total streams. These include 42 identified in survey I and at least 62 newly identified streams. Our large data sample and the enhanced sensitivity of the 3D wavelet search compared to our earlier survey have allowed us to extend the period of activity for several major showers. This includes detection of the Geminid shower from early November to late December and the Quadrantids from early November to mid-January. Among our newly identified streams are the Theta Serpentids which appears to be derived from 2008 KP and the Canum Venaticids which have a similar orbit to C/1975 X1 (Sato). We also find evidence that nearly 60% of all our streams are part of seven major stream complexes, linked via secular invariants.

© 2009 Elsevier Inc. All rights reserved.

## 1. Introduction

The detection of meteor showers has historically been a major enterprise in the field of meteor science. Establishing the existence and character of meteor showers provides insight into the decay processes of comets, the immediate parents to most meteor showers. Since all members of a given shower share the same parent, it becomes possible to study the parent through proxy observations of its debris. Combining observational data from meteor showers with theoretical studies of meteoroid stream evolution has led to estimates for the length of time since apparently extinct cometary bodies have last been active (e.g. 3200 Phaethon and the Geminids; Jones, 1985), dynamical explanations for large changes in activity for some showers from year-to-year (e.g. Taurids; Asher and Izumi, 1998), refined predictions related to meteor outbursts and storms (Asher, 1999) and led to lower estimates for masses of parent objects based on total mass in a meteoroid stream (Jenniskens, 2006). In some studies, detailed dynamical models are compared against shower catalogs and the resulting models verified based on whether or not a predicted shower is actually observed (cf. Babadzhanov et al., 2008). Clearly, establishing which showers exist and which are spurious becomes critical to validating such models.

While stronger showers are often measurable unambiguously with different techniques (cf. Rendtel and Arlt, 2008), the difficulty in separating coherent shower "signals" from the sporadic background has led historically to establishment of many catalogs of minor showers (see in particular the exhaustive catalog of Denning (Beech, 1990)). The lack of clear definition of what constitutes a meteor shower and combining data across multiple instrument platforms together with multiple names/designations proliferating in the literature for the same shower is a major problem.

Recently, IAU commission #22 has begun a formal procedure for recognizing and establishing meteor showers (Jenniskens et al., 2009), in response to this need and it is hoped that some regularization of accepted meteor shower lists will occur in the near future.

Here we report on an extension of our earlier radar study of meteor showers using the Canadian Meteor Orbit Radar (Brown et al., 2008, hereafter paper I). In that earlier study, we identified major showers using backscatter radar measurements of individual meteor echoes and their associated orbits. The approach taken was a conservative strategy combining single station radiant mapping techniques with 2D wavelet transforms of individually measured meteor radiants observed between 2001 and 2006. Here we ex-





<sup>\*</sup> Corresponding author. Fax: +1 519 661 4085.

E-mail address: pbrown@uwo.ca (P. Brown).

<sup>0019-1035/\$ -</sup> see front matter  $\circledast$  2009 Elsevier Inc. All rights reserved. doi:10.1016/j.icarus.2009.11.015

pand on that earlier study, first by increasing the number of orbits examined to just over three million and extending the collection time another 2 years, to 2008. Finally, we have adopted a new search algorithm which makes use of the full meteor velocity vector with clustering examined via a 3D wavelet transform, improving our sensitivity by nearly an order of magnitude.

## 2. CMOR: brief review of radar hardware and analysis

The Canadian Meteor Orbit Radar (CMOR) consists of three separate interferometric radars, synchronized in transmission and receiving and operating from a single site. However, our data in this work is confined only to records made with the 29.85 MHz orbit measurement system. In paper I we summarized the main details of the system pertinent to the meteor shower survey. Technical specifications and design of the system can be found in Jones et al. (2005) and Webster et al. (2004); here we remind the reader of the most important of those details from paper I relevant to our current study.

The receive and transmit hardware for the 29.85 MHz system is based on the commercially available SKiYMET systems (Hocking et al., 2001). The basic echo detection and analysis algorithms used for the SKiYMET system are described in detail in Hocking et al. (2001). The main site has a receive antenna layout in a cross pattern with five antennas each attached to one receiver, permitting unambiguous interferometric measurement of echo directions. The main site receives signals via UHF radio links from two outlying remote stations (6.2 and 8.1 km respectively from the main site) which are fed into a sixth and seventh receiver at the main station, thus providing signals from portions of the trail not directly accessible from the specular reflection condition for the main site. For echoes detected at both outlying stations, the interferometry from the main site, when combined with the time delay from each remote site is sufficient information to permit measurement of velocity vectors for individual meteors with appropriate geometry.

The transmit and receive antenna have broad (nearly all-sky) gain patterns. The interferometric error is less than  $0.5^{\circ}$  for echoes with elevations above  $30^{\circ}$  found from comparison with optically observed meteors. More than 85% of our echo reflections have elevations above  $30^{\circ}$ , with none lower than  $15^{\circ}$ .

The effective minimal detectable signal strength at 29.85 MHz corresponds to meteors with radio magnitudes near +8 (cf. Verniani (1973) for the definition of radio meteor magnitude), while the average magnitude for echoes in our sample where orbits were measurable is +7.5. These correspond roughly to meteoroids of  $\sim 10^{-7}$  kg mass for an average velocity of 30 km/s.

Our errors in velocity and radiant position vary with the echo trajectory geometry and signal-to-noise ratio of each echo. Typical values for individual radiant errors are  $3^{\circ}$  in direction and  $\sim 5\%$  in speed. Obviously, for the stream orbits the error in the mean for these measurements is smaller than for any echo from a particular stream member. Our dominant remaining uncertainty relates to the magnitude of the deceleration correction to be applied to each measured speed. We have used the approach from Brown et al. (2004) where major showers serve as calibration points for CMOR data to compute a mean correction as a function of measured velocity and height. This average correction was applied to each echo having time-of-flight information as described in paper I. The spread in this correction means that there are often systematic errors in the expected pre-atmospheric speed; an effect manifest, for example, in several stream orbits in our survey having apparently hyperbolic orbits, a clear example of overcorrection. In all, a half-dozen cases were found in our survey where the mean orbits are computed to be hyperbolic. We find that removing the deceleration correction and using the raw average speed for the shower produces a bound orbit in each case, which we view as confirmation of a much wider spread in the true deceleration corrections than is taken into account by our simple procedure. This finding underscores the notion that no "average" meteoroid (or meteoroid stream) exists, but rather that there is a wide spread in physical characteristics among a population even one sharing a common parent (cf. Ceplecha et al., 1998).

# 3. Shower search methodology: application of a 3D wavelet transform to radar meteor radiant distributions

In the present study, only meteoroids whose complete velocity vector is measured are used. For these data we have the time of occurrence of the meteor plus its radiant direction and speed – sufficient information to determine its heliocentric orbit (Ceplecha, 1987). We divide our geocentric radiant measurements into 1° solar longitude bins. Each solar longitude bin has, on average,  $\sim 10^4$  orbits and for each we use the geocentric radiant coordinates together with the observed geocentric speed as inputs into our wavelet transform.

From the results in paper I, we showed that for our data and the analysis approach used to measure individual orbits, the average error in measured radiant position is  $3^{\circ}$  and the spread in speeds  $\sim 5\%$  but running as high as 10% at higher speeds. More recent simultaneous optical and radar measurements show our radiant errors to be closer to  $1^{\circ}$  on average, but these tend to be appropriate to high signal-to-noise ratio echoes and not representative of the population as a whole. Both the spread in radiant location and speed were shown in paper I to be well approximated as Gaussian distributions. We make use of these results in the form of the choice for probe sizes in our 3D wavelet transform.

The wavelet transform is often applied to datasets where clustering in several variables occurs. The power of the wavelet transform approach to identifying significance in clustering studies comes about through the ability of wavelets to be optimized based on cluster scale (Graps, 1995). In our earlier study, a 2D wavelet transform was applied to radiant location. We partitioned those individual radiant data into discrete velocity and solar longitude bins to enhance apparent clustering (presumed to be showers), but this is not optimal. In our current approach we expand the dimensionality of our search to 3D, using the spatial location of the geocentric radiant and the observed geocentric speed. By definition, shower meteors should all have radiants which cluster at or near a single value of  $((\lambda - \lambda_o)_g, \beta_g, V_g)$  at a particular time. Here  $\lambda$  is the ecliptic longitude of the geocentric radiant,  $\lambda_o$  is the solar longitude at the time of occurrence of the meteor,  $\beta_g$  is the ecliptic latitude of the geocentric radiant and  $V_g$  is the geocentric speed. We chose to use sun-centered ecliptic longitude and ecliptic latitude as shower radiants tend to drift parallel to the ecliptic plane and show very little total drift in this coordinate system. In principle we could expand this cluster analysis to the time domain explicitly, but due to the variation in radiant collecting area with time of day, time periods less than a day produce spurious clustering. Therefore, to ensure uniformity in coverage timescales of 1 day (or integral multiples of a day) only were used for searches. For simplicity we have chosen single solar longitude degree ( $\sim 1$  day) time bins and keep these fixed. Experiments with longer time bins did not produce markedly improved results. We still require simple clustering in time for shower identification, however, as described later.

As in paper I, we make use of the Mexican hat mother wavelet (which is well suited to point distributions having Gaussian shapes of enhancements) to produce a wavelet transform of the form:

$$w[x_{o}, y_{o}, V_{go}] = \frac{1}{(2\pi)^{3/2} \sigma_{v}^{1/2} a} \int_{V_{gmin}}^{V_{gmax}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y, V_{g}) \\ \times \left(3 - \frac{(x_{0} - x)^{2} + (y_{0} - y)^{2}}{a^{2}} - \frac{(V_{go} - V_{g})^{2}}{\sigma_{v}^{2}}\right) \\ \times \exp\left(-0.5\left[\frac{(x_{0} - x)^{2} + (y_{0} - y)^{2}}{a^{2}} + \frac{(V_{go} - V_{g})^{2}}{\sigma_{v}^{2}}\right]\right) \\ \times dxdydv_{\sigma}$$
(1)

where for simplicity we write  $(\lambda - \lambda_o)_g = x$ ,  $\beta_g = y$  as the spatial radiant coordinates in the plane of the sky, a is the spatial probe scale size (in degrees) of the wavelet,  $\sigma_v$  is the size of the velocity probe (in km/s) and  $W_c(x_0, y_0, V_{g0})$  is the resulting wavelet coefficient at location  $(x_o, y_o, V_{g0})$  given a distribution of radiants,  $f(x, y, V_g)$ . The transform only has significant contributions from radiants that are roughly within one probe size of a particular test point; in our numerical implementation we ignore radiants more than four probe scale sizes away from the test point to reduce computation time.

To search for showers in our orbital data, we apply Eq. (1) to all our data and locate local temporal maxima in  $W_c$ . We begin by computing the median of  $W_c$  at each point  $(x_0, y_0, V_{g0})$  taking one measure per degree of solar longitude throughout the year. The median here is found by recursively discarding points more than  $3\sigma$  above the median, until a median value is found where no  $3\sigma$ outliers are present. Once a median value through the entire year is computed at a particular  $(x_0, y_0, V_{g0})$ , a local maximum search is applied to each individual bin in solar longitude in turn. We define a local maxima as a point in a single solar longitude bin where the value of  $W_c(x_0, y_0, V_{g0})$  is more than  $3\sigma$  above the annual median. We also require that a local maximum have a minimum number of individual radiants used in the calculation of  $W_c$  (in our case this is 300). Such a requirement eliminates the problem of small number statistics which can produce many spurious maxima, particularly in the anti-apex direction. The end result of this process is a list of local maxima (together with the deviation of the maximum above the median) for a given degree of solar longitude.

Next, we attempt to link local maxima through time. Maxima are considered potentially linked if they are within 3° spatially, 10% in  $V_g$  and 2° of solar longitude. To these chains of linked maxima we then apply a further filter requiring at least three points be linked, a consistent net positive drift in right ascension and a consistent drift in declination of the radiant be present. Note this process eliminates showers of very short duration (1–2° of solar longitude), irrespective of their strength.

A final strength filter is applied whereby the median of points just before the start of the shower and just after the start of the shower is found and the largest maximum in any linked chain is required to be at least  $3\sigma$  above this median limit. This final check is performed since some shower radiants have low ecliptic latitudes resulting in particular radiant directions having little or no collecting areas during certain segments of the year and in spurious (non-shower) sets of linked maxima, as the year-long median value becomes very small and not representative. Using this local background noise check, as compared to a year-long median, resulted in exclusion of 10 showers from further consideration.

Our wavelet search is first performed as described above using steps in sun-centered longitude and ecliptic latitude of  $0.5^{\circ}$  and in velocity steps of 2% for all solar longitude bins. We adopt an angular probe size of 4° and a velocity probe equivalent in size to 10% of the velocity value. Processing all three million orbits this way in the search for maxima took slightly less than 1 year of CPU time on a 2.5 GHz processor.

Once our linked maxima were identified in this initial coarse survey, we refined the linked shower maxima locations using another search limited to the region proximal to each maxima but still using the same probe sizes. In this follow-on search, the step sizes in spatial and velocity coordinates were five times smaller than the first survey allowing us to better isolate shower maxima.

Fig. 1 shows an example of a new minor shower detected with our search methodology (Chi Taurids).

# 4. Results

The results of our survey, containing the 117 streams identified by our analysis are given in Table 1. These streams include 42 of the 45 previously identified streams from our first survey summarized in paper I. Some of these streams may be associated with one another as a single long shower if activity temporarily drops below our threshold for a short period; our identification and linking algorithm will create two apparently distinct showers. Eliminating possible associations of this sort we have a lower limit of 109 total streams (42 identified in paper I and at least 62 newly identified streams).

This table summarizes detected showers ranked according to the solar longitude where their maximum wavelet value occurs. In addition it summarizes the duration of the shower at the  $3\sigma$  level above the median background and the geocentric radiant location at the time of maximum and drift (assumed to be linear). The drift is not reported for showers of 3 days duration as drift values over such short time intervals are nearly meaningless. The wavelet coefficient at the time of maximum is given as well as the number of standard deviations the value is above the median yearly background at this point  $((\lambda - \lambda_o)_g, \beta_g, V_g)$ . The geocentric velocity at the time of maximum for the shower based on the wavelet peak is also provided.

Table 2 summarizes the mean orbit of the shower using the time of maximum, the geocentric radiant at the time of maximum and  $V_{\rm gmax}$ .

In examining our total shower results (117 showers total including possible duplicates), we have been able to link 55 showers with previously adopted provisional showers of the IAU shower list (Jenniskens et al., 2009) including 42 showers from our first survey and 13 additional showers. The remaining 62 showers are not listed in the IAU shower catalog, though some have been tentatively identified in other surveys (e.g. Molau, 2007), but not formally recognized. Note that in many cases for the showers subjectively linked from our work to the IAU list, substantial differences in radiant, time of maximum and/or velocity were encountered.

Fig. 2 shows the distribution of showers throughout the year as a function of their velocity and strength. The major showers are readily visible in this plot. Also notable are the numerous weak showers which persist for long periods. The paucity of lower velocity showers (below 20 km/s) is unlikely a real feature, but rather an artifact of the strong velocity bias of our radar data, with the production of scattering electrons from meteoroid ablation varying strongly as a function of v and dropping very rapidly at velocities <20 km/s (cf. Jones, 1997) coupled with the generally larger radiant areas expected for low velocity streams (Kresak and Porubcan, 1970). One consequence of this selection effect is that we are unlikely to detect many asteroidal meteoroid streams using our current search criteria.

Finally, the radiant locations in sun-centered coordinates at the time of each shower's maximum are shown in Fig. 3. Here the shower locations are plotted relative to the main sporadic radiant sources (cf. Jones and Brown, 1993). While many showers do occur in one of the main sporadic sources, interestingly, a large number of our identified showers occur along two "arcs" connecting the north toroidal source with the helion and anti-helion sporadic sources. We believe this radiant distribution to be indicative of a



**Fig. 1.** Example of a new minor shower (Chi Taurids) identified with our linking procedure. The top plot shows the drift in right ascension, the next plot the drift in declination and the third plot shows the excursion in the value of the wavelet coefficient in units of standard deviations for the shower at each solar longitude interval above the yearly median value at that radiant location. The bottom-most plot shows the wavelet coefficient computed throughout the year at the sun-centered radiant location at the time of maximum of the shower ( $\lambda = 220^\circ$ ); note the change in the *x*-axis scale between the bottom-most plot and the other three plots. The interval in which our algorithm identified the shower is shown by vertical bold lines. The median background and standard deviations above this median level are also given. There clearly is some activity persisting beyond these limits; however as the excursions in strength are below  $3\sigma$  relative to the fluctuations averaged over the entire year outside our window, we do not track the shower outside this interval. Note that this shower may be associated with th  $\sigma$ -Arietids (Jenniskens, 2006).

related complex of showers potentially with a common progenitor – we will comment in the next section in detail on the significance of this result.

# 5. Discussion

The results of our survey suggest that some of the streams detected are part of a broader complex of showers. It has been assumed that the sporadic sources are the result of ever broadening and merging of older streams (cf. Jones and Brown, 1993). That some streams are relatively old (e.g. Perseids) has been established through simulations (Brown and Jones, 1998), while other streams are unquestionably very young based solely on their present activity variations and short periods of activity, e.g. the October Draconids (cf. Jenniskens, 2006). Younger streams often may be linked to parent objects purely on the basis of orbital similarity. Such cases are possible because these stream meteoroids have evolved through less than ~1 precession cycle and remain on orbits similar to those at their ejection epoch. In contrast, much older streams become widely spread out in both nodal longitude

# Table 1

Summary table of showers found using our search methodology, arranged according to the time of maximum in units of solar longitude. The time of maximum, duration of the shower (degrees), geocentric radiant coordinates (J2000.0) and velocity at the time of maximum together with the radiant drift and associated error are shown. Note that drifts are not computed for showers with 3 days duration. The raw wavelet coefficient at the time of maximum and the number of standard deviations that this value is above the median background is also given; the latter is a better indicator of absolute relative activity between streams. The 62 new showers found in this survey are shown with an asterisk (\*) after the IAU code.

| IAU name                                        | IAU code         | $\lambda_{max}$ | $\lambda_{start}$ | $\lambda_{end}$ | Dur.    | $\alpha_g$    | $\delta_g$   | Δα    | $\pm(\Delta \alpha)$ | $\Delta\delta$ | $\pm(\Delta\delta)$ | W <sub>Cmax</sub> | $\sigma_{ m wave}$ | $V_g$        |
|-------------------------------------------------|------------------|-----------------|-------------------|-----------------|---------|---------------|--------------|-------|----------------------|----------------|---------------------|-------------------|--------------------|--------------|
| Daytime April Piscids                           | APS              | 26              | 16                | 38              | 23      | 4.9           | 5.5          | 0.94  | 0.02                 | 0.42           | 0.02                | 569.4             | 8.6                | 29.2         |
| April Lyrids                                    | LYR              | 32              | 30                | 34              | 5       | 272.2         | 32.6         | 0.62  | 0.18                 | -0.33          | 0.13                | 492.3             | 32.8               | 46.6         |
| Beta Pegasids                                   | BPG.             | 36              | 24                | 49              | 26      | 350.5         | 27.8         | 0.63  | 0.04                 | 0.34           | 0.03                | 151               | 7.1                | 41           |
| April rho Cygnids                               | ARC <sub>*</sub> | 37              | 34                | 43              | 10      | 324.5         | 45.9         | 0.61  | 0.05                 | 0.36           | 0.04                | 317.7             | 20.5               | 41.8         |
| Lambda Lyrids                                   | LLY.             | 41              | 32                | 54              | 23      | 283.7         | 28.5         | 0.72  | 0.04                 | -0.15          | 0.02                | 430.5             | 42.1               | 33.4         |
| May Lacertids                                   | MAL.             | 42              | 42                | 48              | 7       | 335.6         | 45.3         | 0.61  | 0.42                 | 0.5            | 0.25                | 212.3             | 12.2               | 43           |
| Eta Aquariids                                   | EIA              | 45              | 30                | 66              | 3/      | 337.9         | -0.9         | 0.7   | 0.01                 | 0.33           | 0                   | 4100              | 257.4              | 63.6         |
| Zeta Ophiushuida                                |                  | 40              | 44                | 40              | 5       | 35.9          | 34.1         | 074   | 0 10                 | 0 20           | 0 20                | 40.8              | 5.5<br>4.4         | 20.2         |
| Northern Davtime omega-Cetids                   | ZOP <sub>*</sub> | 47              | 44<br>16          | 40<br>61        | 46      | 204.0<br>11.8 | -4.4<br>18.0 | 0.74  | 0.19                 | -0.29          | 0.29                | 40<br>1006        | 4.4<br>38 /        | 22.0         |
| Sigma Cetids                                    | SCT              | 49              | 49                | 51              | 3       | 39            | -15.7        | 0.55  | 0.01                 | 0.50           | 0.01                | 26.7              | 62                 | 35.5         |
| Southern Davtime omega-Cetids                   | OCE              | 49              | 11                | 65              | 55      | 23.4          | -4.3         | 0.91  | 0                    | 0.46           | 0                   | 1081              | 76.3               | 37           |
| Daytime Delta Triangulids                       | DDT.             | 53              | 52                | 56              | 5       | 35.3          | 33.7         | 1.95  | 0.17                 | 0.91           | 0.17                | 86.4              | 8.1                | 28.4         |
| Daytime xi <sub>2</sub> Cetids                  | XIC.             | 54              | 54                | 57              | 4       | 36.4          | 8.6          | 1     | 0.14                 | 0.3            | 0.8                 | 63                | 11.6               | 16.5         |
| Epsilon Aquilids                                | EAU              | 54              | 51                | 55              | 5       | 278.7         | 13.4         | 1.1   | 0.39                 | 0.23           | 0.31                | 190               | 21.3               | 31.4         |
| May Vulpeculids                                 | MVL <sub>*</sub> | 54              | 54                | 82              | 29      | 287.2         | 22.5         | 0.66  | 0.29                 | -0.09          | 0.26                | 219.8             | 26.9               | 32.5         |
| Phi Pegasids                                    | PHP.             | 54              | 51                | 55              | 5       | 358.3         | 20.7         | 0.72  | 0.17                 | -0.01          | 0.29                | 89.6              | 9.5                | 30.4         |
| South Daytime May Arietids                      | SMA              | 54              | 36                | 59              | 24      | 36.3          | 10.8         | 0.96  | 0.01                 | 0.3            | 0.01                | 796.3             | 34.2               | 28           |
| Tau Ophiuchuids                                 | TOP.             | 55              | 54                | 57              | 4       | 269.3         | -6.4         | 0.03  | 0.1                  | -0.55          | 0.26                | 104.7             | 7                  | 37           |
| August zeta Cygnids                             | ECY.             | 60              | 59                | 61              | 3       | 318.2         | 29.8         | 0     | 0 17                 | 0              | 0 0 0 7             | 52.8              | 6.2<br>5 1         | 29.2         |
| Theta Serportide                                | PSP <sub>*</sub> | 65              | 60                | 74              | Э<br>15 | 1.8           | 28.1         | 1.11  | 0.17                 | 0.7            | 0.27                | 45.9              | 5.I<br>171         | 30.8         |
| Davtime zeta Perseids                           | 7DF              | 74              | 56                | 90              | 35      | 204<br>56.6   | 23.2         | 0.77  | 0.04                 | -0.33          | 0.07                | 620               | 216                | 52<br>271    |
| June Mu Cassioneids                             | IMC              | 74              | 49                | 95              | 47      | 17.5          | 53.9         | 0.91  | 0.01                 | 0.23           | 0.07                | 226.6             | 16.6               | 43.6         |
| Southern June Aquilids                          | SZC              | 80              | 79                | 83              | 5       | 305.3         | -33.2        | 0.24  | 0.11                 | 0.16           | 0.1                 | 539.1             | 45.7               | 37.7         |
| Daytime Arietids                                | ARI              | 81              | 62                | 99              | 38      | 45.7          | 25           | 0.86  | 0.03                 | 0.18           | 0.01                | 3384              | 125.2              | 39.1         |
| Daytime lambda Taurids                          | DLT              | 86              | 71                | 98              | 28      | 57.3          | 11.4         | 0.85  | 0.01                 | 0.33           | 0.01                | 471.9             | 13.4               | 35.6         |
| Zeta Eridanids                                  | ZER.             | 93              | 93                | 97              | 5       | 50.8          | -4.1         | 0.64  | 0.1                  | 0.44           | 0.27                | 40.1              | 6.8                | 50.9         |
| Daytime beta Taurids                            | BTA              | 94              | 89                | 101             | 13      | 82.8          | 20.1         | 0.82  | 0.05                 | 0.05           | 0.02                | 553.1             | 14.1               | 26.8         |
| Kappa Cetids                                    | KCT.             | 94              | 94                | 98              | 5       | 51            | 4.6          | 1.71  | 0.2                  | 0.95           | 0.11                | 63                | 7.4                | 29.2         |
| Epsilon Perseids                                | EPE              | 96              | 91                | 107             | 17      | 58.3          | 37.5         | 0.87  | 0.03                 | 0.14           | 0.02                | 239.3             | 10.4               | 44.6         |
| Beta Camelopardalids                            | BCM.             | 100             | 99                | 112             | 14      | 59.7          | 59.7         | 2.1   | 0.1                  | 0.03           | 0.04                | 119.5             | 7.8                | 42.7         |
| July Deta Pegasids                              | JBP*             | 100             | 99                | 101             | 3       | 349.1         | 34.4         | 0     | 0                    | 0              | 0                   | 48.3              | 1.1                | 27.8         |
| July Andromedids                                |                  | 100             | 99<br>97          | 101             | 5       | 36.1          | 21.2<br>29.1 | 0 68  | 05                   | 0 96           | 025                 | 80.4              | 0.0<br>9.8         | 26.5         |
| Northern June Aquilids                          | NZC              | 101             | 71                | 123             | 53      | 310.1         | -42          | 0.08  | 0.01                 | 0.50           | 0.25                | 846.9             | 44 9               | 375          |
| Iuly Taurids                                    | ITR.             | 104             | 95                | 112             | 18      | 70            | 1.5          | 0.81  | 0.06                 | 0.16           | 0.01                | 94.1              | 14                 | 39.7         |
| Microscopiids                                   | MIC.             | 104             | 90                | 115             | 26      | 320.3         | -28.3        | 0.89  | 0.01                 | 0.29           | 0.01                | 310.1             | 8                  | 38           |
| Epsilon Pegasids                                | EPG              | 105             | 97                | 105             | 9       | 324.3         | 13.2         | 1.15  | 0.09                 | -0.3           | 0.14                | 412.8             | 40.9               | 30.3         |
| Alpha Pegasids                                  | APG.             | 106             | 105               | 107             | 3       | 353.9         | 17.8         | 0     | 0                    | 0              | 0                   | 33.1              | 7.3                | 35.9         |
| Phi Piscids                                     | PPS <sub>*</sub> | 106             | 104               | 107             | 4       | 20.1          | 24.1         | 1.56  | 0.45                 | 0.36           | 0.16                | 207.2             | 4.7                | 62.9         |
| Theta Perseids                                  | TPR.             | 106             | 105               | 110             | 6       | 41.1          | 47.6         | 0.87  | 0.09                 | -0.07          | 0.09                | 70.3              | 10                 | 53           |
| Beta Equuleids                                  | BEQ              | 107             | 106               | 118             | 13      | 322.8         | 8.2          | 0.71  | 0.05                 | -0.28          | 0.07                | 468.5             | 36                 | 31.2         |
| Alpha Lacertids                                 | ALA              | 109             | 100               | 115             | 16      | 348           | 51.6         | 1.1   | 0.06                 | 0.42           | 0.02                | 327.6             | 18.2               | 38.3         |
| Alpha Capricorpids                              | CAR              | 120             | 100               | 129             | 30      | 14.8          | 10.0         | 0.96  | 0.09                 | 0.38           | 0.02                | 1033<br>649 5     | 45.0               | 44.8<br>22   |
| Southern delta Aquariida                        | SDA              | 125             | 114               | 164             | 51      | 340.8         | -16.7        | 0.0   | 0.01                 | 0.3            | 0.02                | 7800              | 24.4<br>177.7      | 40 7         |
| Iota Sculptorids                                | ISC              | 128             | 126               | 129             | 4       | 52            | -28.1        | 0.70  | 027                  | -0.4           | 0.01                | 44 7              | 85                 | 36.7         |
| August omicron Eridanids                        | OME.             | 134             | 132               | 136             | 5       | 66.9          | -8.3         | 1.22  | 0.27                 | 0.08           | 0.4                 | 17.6              | 4.7                | 45           |
| August Lyncids                                  | ALN.             | 135             | 116               | 136             | 21      | 119.8         | 55.1         | 1.52  | 0.1                  | -0.23          | 0.04                | 93.1              | 6.3                | 41.7         |
| Piscis Austrinids                               | PAU              | 135             | 124               | 142             | 19      | 357.1         | -21.5        | 0.52  | 0.05                 | 0.39           | 0.04                | 218.6             | 14.8               | 44           |
| Delta Monocerotids                              | DMO.             | 137             | 136               | 138             | 3       | 114.1         | -3.1         | 0     | 0                    | 0              | 0                   | 34.5              | 8.2                | 37.2         |
| Daytime xi Orionids                             | XRI              | 137             | 128               | 140             | 13      | 107.5         | 16.2         | 0.7   | 0.04                 | -0.1           | 0.03                | 241.8             | 11.8               | 43.8         |
| Gamma Eridanids                                 | GER,             | 138             | 138               | 140             | 3       | 61.9          | -17.4        | 0     | 0                    | 0              | 0                   | 51.1              | 5                  | 56.9         |
| Northern delta Aquariids                        | NDA              | 139             | 126               | 156             | 31      | 345.7         | 2.3          | 0.72  | 0.01                 | 0.26           | 0.01                | 1200              | 12.6               | 37.3         |
| Perseids                                        | PEK              | 140             | 123               | 147             | 25      | 48            | 57.2         | 1.39  | 0.02                 | 0.29           | 0.01                | 1200              | 90.7               | 61.4<br>20.1 |
| August Cetids                                   | ACT              | 140             | 153               | 156             | 12      | 540.2<br>7    | -11.4        | 1.85  | 0.04                 | 0.41           | 0.04                | 553               | 4.0<br>7           | 29.1         |
| Kappa Draconids                                 | KDR              | 155             | 155               | 161             | 7       | ,<br>189.4    | 73.1         | 0.95  | 0.69                 | -0.7           | 0.15                | 79.8              | ,<br>8.2           | 38           |
| Northern iota Aquariids                         | NIA              | 159             | 145               | 164             | 20      | 355.4         | 3.4          | 0.84  | 0.01                 | 0.39           | 0.01                | 572.8             | 7.5                | 28.7         |
| Daytime zeta Cancrids                           | ZCA              | 160             | 140               | 167             | 28      | 136.1         | 11.7         | 0.92  | 0.02                 | -0.18          | 0.01                | 301.7             | 16.6               | 42.1         |
| Daytime pi Leonids                              | DPL.             | 174             | 172               | 182             | 11      | 145.6         | 8.7          | 0.76  | 0.14                 | -0.34          | 0.06                | 228.2             | 4.6                | 41.7         |
| Daytime kappa Leonids                           | KLE              | 183             | 164               | 200             | 37      | 162.3         | 14.9         | 0.62  | 0.01                 | -0.3           | 0.01                | 592.9             | 21                 | 43.3         |
| Beta Ursae Majorids                             | BUM.             | 184             | 183               | 187             | 5       | 161.2         | 56.5         | 1.53  | 0.59                 | 0.1            | 0.13                | 76.7              | 6.8                | 50.3         |
| Daytime Sextantids                              | DSX              | 186             | 174               | 197             | 24      | 154.3         | -1           | 0.56  | 0.04                 | -0.54          | 0.02                | 1408              | 89.3               | 31.3         |
| Lambda Draconids                                | LDR.             | 196             | 195               | 212             | 18      | 156.1         | 74.7         | 1.29  | 0.1                  | -0.23          | 0.06                | 155               | 10.6               | 37.5         |
| Southern Taurids                                | STA              | 196             | 173               | 217             | 45      | 30.9          | 8.1          | 0.817 | 0.005                | 0.291          | 0.004               | 1479              | 29.9               | 28.2         |
| October eta Eridanids<br>October Ursao Majorido | OCU              | 201             | 200               | 202             | 3       | 45.8<br>142.9 | -9.8         | 0     | 0                    | 0              | 0                   | 37.1<br>102.7     | 12 5               | 25.4         |
| october orsae majorius                          | 000              | 202             | 201               | 203             | 5       | 145.8         | 05.9         | U     | U                    | 0              | U                   | 195./             | 15.5               | J0.1         |

| Tab | le 1 | (continued | l) |
|-----|------|------------|----|
|-----|------|------------|----|

| IAU name                     | IAU code         | $\lambda_{max}$ | $\lambda_{start}$ | $\lambda_{end}$ | Dur. | αg    | $\delta_g$    | Δα    | $\pm(\Delta \alpha)$ | $\Delta\delta$ | $\pm(\Delta\delta)$ | W <sub>Cmax</sub> | $\sigma_{ m wave}$ | $V_g$        |
|------------------------------|------------------|-----------------|-------------------|-----------------|------|-------|---------------|-------|----------------------|----------------|---------------------|-------------------|--------------------|--------------|
| October Leporids             | OLP.             | 203             | 196               | 206             | 11   | 81.6  | -13.8         | 1.08  | 0.14                 | 0.26           | 0.06                | 173.6             | 70                 | 25.5         |
| Orionids                     | ORI              | 208             | 198               | 227             | 30   | 95.5  | 15.2          | 0.78  | 0.01                 | 0.02           | 0.01                | 2507              | 82.5               | 65.4         |
| Alpha Ursae Majorids         | AUM.             | 209             | 198               | 214             | 17   | 174.6 | 64.6          | 1.07  | 0.11                 | -0.55          | 0.11                | 164.5             | 19.1               | 35.6         |
| Leonis Minorids              | LMI              | 210             | 199               | 213             | 15   | 160.7 | 35.7          | 1.22  | 0.07                 | -0.4           | 0.05                | 182.8             | 13.7               | 59.8         |
| Xi Draconids                 | XDR              | 211             | 209               | 215             | 7    | 171.2 | 70.6          | 0.98  | 0.25                 | -0.63          | 0.19                | 236.1             | 8.3                | 37.1         |
| October beta Camelopardalids | OBC.             | 214             | 200               | 215             | 16   | 66.8  | 56.2          | 1.45  | 0.09                 | 0.3            | 0.07                | 77.2              | 8.1                | 47.6         |
| October kappa Draconids      | OKD.             | 216             | 215               | 224             | 10   | 182.1 | 63.4          | 0.95  | 0.14                 | -0.47          | 0.22                | 239.6             | 16.8               | 37.3         |
| Northern Taurids             | NTA              | 219             | 217               | 241             | 25   | 48.9  | 17.7          | 0.84  | 0.01                 | 0.25           | 0.02                | 776.5             | 13.4               | 28.1         |
| Chi Taurids                  | CTA.             | 220             | 194               | 227             | 34   | 63.2  | 24.7          | 0.96  | 0.01                 | 0.19           | 0.01                | 440.6             | 8.2                | 42.1         |
| Omicron Eridanids            | OER              | 227             | 213               | 243             | 31   | 55.6  | -1.5          | 0.74  | 0.48                 | 0.64           | 0.21                | 66.5              | 5.9                | 26.1         |
| Omega Eridanids              | OME.             | 234             | 232               | 235             | 4    | 73.3  | -5.3          | 0.95  | 0.05                 | 0.35           | 0.26                | 49.4              | 8.6                | 31.8         |
| Leonids                      | LEO              | 237             | 230               | 237             | 8    | 155.1 | 21.1          | 0.55  | 0.06                 | -0.37          | 0.2                 | 523.7             | 20.1               | 67.3         |
| November theta Aurigids      | THA              | 237             | 233               | 239             | 7    | 89    | 34.7          | 1.49  | 0.13                 | 0.14           | 0.14                | 226.6             | 11                 | 33.8         |
| November delta Draconids     | NDD              | 241             | 240               | 242             | 3    | 2777  | 68.2          | 0     | 0                    | 0              | 0                   | 81.6              | 6                  | 25.5         |
| Gamma Taurids                | GTA              | 241             | 240               | 242             | 3    | 68 1  | 13            | 0     | 0                    | 0              | 0                   | 48.3              | 69                 | 15.7         |
| November I Draconids         | NID              | 241             | 221               | 264             | 44   | 200.1 | 64 5          | 0.72  | 011                  | _0.31          | 0.08                | 606 1             | 18.1               | 43           |
| Rho Bootids                  | RBO              | 242             | 241               | 243             | 3    | 215.7 | 31.8          | 0.72  | 0                    | 0.51           | 0                   | 131 3             | 53                 | 43           |
| November omega Orionids      | NOO              | 246             | 225               | 256             | 32   | 90.5  | 15.3          | 0 761 | 0.01                 | _0.04          | 0.01                | 1704              | 83.2               | 43.1         |
| Alpha Canis Majorids         | ACA              | 247             | 247               | 265             | 19   | 100.2 | -173          | 0.69  | 0.09                 | 0.01           | 0.06                | 87.6              | 36.3               | 42           |
| Camma Canis Majorids         | CCM              | 257             | 255               | 258             | 4    | 100.2 | _11.3         | 0.03  | 0.03                 | _0.17          | 0.00                | 83.1              | 67                 | 43.6         |
| Sigma Hydrids                | HVD              | 258             | 255               | 250             | 17   | 105.0 | 25            | 0.45  | 0.25                 | _0.26          | 0.03                | 1173              | 11.8               | 40.0<br>59.2 |
| December theta Aurigids      | DTA              | 250             | 261               | 263             | 2    | 03    | 36.6          | 0.50  | 0.02                 | 0.20           | 0.05                | 580               | 11.0               | 58.0         |
| December Monocerotids        | MON              | 261             | 257               | 205             | 10   | 102.3 | 86            | 0.60  | 0.02                 | 0.24           | 0.08                | 100 7             | 28.1               | 10.5         |
| Cominide                     | CEM              | 261             | 2/0               | 200             | 34   | 112.5 | 32.1          | 1 1 2 | 0.02                 | 0.17           | 0.08                | 16476             | 278.2              | 345          |
| Nu Ceminids                  | NCM              | 262             | 240               | 263             | 24   | 00    | 10 1          | 0     | 0.01                 | 0              | 0.01                | 83                | 70.5               | 65.8         |
| December Canis Majorids      | DCM              | 266             | 264               | 205             | 3    | 1123  | 14.6          | 0     | 0                    | 0              | 0                   | 1/0 7             | 503                | 12.8         |
| December Hydrids             | DHV              | 200             | 261               | 200             | 21   | 1315  | 11.2          | 0.80  | 0.02                 | 0.58           | 0 02                | 77 3              | 18 /               | 54.5         |
| December Leonis Minorids     | DIM.             | 200             | 261               | 201             | 26   | 162.2 | 200           | 0.05  | 0.02                 | -0.38          | 0.02                | 180.8             | 11 1               | 62.8         |
| Urside                       |                  | 208             | 201               | 280             | 20   | 222 1 | 29.9          | 1.77  | 0.02                 | -0.47          | 0.02                | 100.0             | 24.9               | 25.6         |
| Beta Monocerotids            | BMO              | 270             | 209               | 272             | 2    | 100.5 | 74.0<br>Q Q   | 0     | 0.40                 | -0.05          | 0.58                | 300               | 24.0<br>Q          | 33.0         |
| Sigma Sorpontide             | SCE              | 271             | 271               | 275             | 27   | 242.4 | -0.0          | 064   | 0 02                 | 0 02           | 0 02                | 59.9<br>604.6     | 0<br>77 7          | 122          |
| January Loopide              | 33E<br>11 E      | 275             | 233               | 291             | 3/   | 1/0 2 | -0.1          | 0.04  | 0.02                 | 0.03           | 0.02                | 760.1             | 1110               | 42.J<br>52.2 |
| January Leonius              |                  | 202             | 275               | 207             | 3    | 140.2 | 12.0          | 0.7   | 0.05                 | -0.15          | 0.05                | 202               | 60                 | 32.5         |
| Quadrantida                  |                  | 205             | 201               | 205             | 5    | 139.1 | -12.9<br>40 E | 0 79  | 0.01                 | 0 20           | 0 01                | 7644              | 1410               | 37.0<br>41.7 |
| Quadrantius<br>Alpha Hudride | QUA              | 205             | 252               | 291             | 24   | 100 5 | 40.5          | 0.76  | 0.01                 | -0.56          | 0.01                | 220.0             | 141.9              | 41.7         |
| Dautima vi Sagittariida      |                  | 200             | 207               | 200             | 10   | 120.0 | -0.0          | 0.04  | 0.01                 | -0.12          | 0.05                | 223.9             | 52.0<br>12.0       | 45.2         |
| Pota Sovtantida              | ASA<br>PCV       | 200             | 270               | 290             | 0    | 202.5 | -10.5<br>1.9  | 0.77  | 0.02                 | 0.12           | 0.02                | 202.5<br>205      | 12.0               | 20.0         |
|                              |                  | 292             | 200               | 295             | 14   | 140.2 | 1.0           | 1.13  | 0.15                 | -0.44          | 0.05                | 60.J              | 4.J                | 27.0         |
| January Hyunus               |                  | 292             | 201               | 294             | 14   | 149.7 | -22.1         | 1.14  | 0.1                  | -0.85          | 0.1                 | 04<br>60.2        | 12                 | 57.9         |
| Vi Common Donoslida          | VCD              | 295             | 291               | 290             | 10   | 205.5 | 42.0          | 0.55  | 0.2                  | -0.5           | 0.59                | 09.5<br>EE0.2     | 9                  | 32.0         |
| Al Colollae Boleallus        | ACB              | 295             | 287               | 304             | 18   | 247   | 30.3          | 1.04  | 0.04                 | 0.11           | 0.02                | 017.1             | 33.3               | 44.8         |
| Lallibua Boolius             | LBO              | 296             | 280               | 297             | 18   | 221.5 | 42.4          | 1.04  | 0.05                 | -0.76          | 0.02                | 817.1             | 41.9               | 40.7         |
| Theta Coronae Boreands       | ICB              | 296             | 287               | 304             | 18   | 233.0 | 34.4          | 0.3   | 0.08                 | 0.16           | 0.05                | 934.0             | 35.1               | 37.7         |
| Gamma Ursae Minorids         | GUM.             | 299             | 294               | 304             | 11   | 231.8 | 66.8          | 0.7   | 0.12                 | -0.57          | 0.09                | 233.9             | 13.2               | 31.8         |
| Mu Hydrids                   | MHY,             | 300             | 299               | 306             | 8    | 154.3 | -20.9         | 0.65  | 0.13                 | 0.76           | 0.26                | 136.6             | 23.8               | 39.1         |
| Daytime chi Capricornids     | DCS              | 301             | 294               | 315             | 22   | 304.7 | -29.2         | 0.73  | 0.04                 | 0.24           | 0.04                | 213.4             | 12.9               | 23.8         |
| Alpha Antliids               | AAN              | 312             | 295               | 332             | 38   | 160.7 | -12.3         | 0.745 | 0.02                 | -0.36          | 0.01                | /93.4             | 62.3               | 43.2         |
| February Comae Beriniciids   | FCB,             | 324             | 323               | 325             | 3    | 186.2 | 29.1          | 0     | 0                    | 0              | 0                   | 32.9              | 5                  | 24.2         |
| Daytime kappa Aquariids      | MKA <sub>*</sub> | 350             | 346               | 350             | 5    | 332   | -8.4          | 1.75  | 0.3                  | 0.39           | 0.19                | 262.5             | 3.7                | 31.4         |
|                              |                  |                 |                   |                 |      |       |               |       |                      |                |                     |                   |                    |              |

and argument of perihelion under differential secular precession (Babadzhanov and Obrubov, 1992). More evolved streams may also intersect the Earth at more than one location (in fact up to eight intersections are possible from one initial stream under the action of planetary perturbations). In cases where evolution of an initial stream (usually with low inclination) produces showers visible at the ascending and descending node, we refer to the streams as north (descending node) and south (ascending) nodal branches. Usually, stream activity for the branches occurs at the same time of the year and radiants are symmetric about the ecliptic plane. For common stream intersections pre-perihelion and post-perihelion we refer to the streams as twin showers following Whipple (1940); for prograde streams one shower in such twin streams is a nighttime shower and the other a Daytime shower and both typically have similar orbital elements, but differing values of  $\Omega$  and  $\omega$ . Details of the underlying dynamics can be found in discussions by Babadzhanov and Obrubov (1992) and Sekanina (1973). We note that particularly twin associations in our data may be somewhat uncertain as the mean stream elements are affected by observational error.

## 5.1. Stream complexes

For evolved streams, linkages with parent objects or other streams is more complex. We shall argue that some of our showers are part of broader complexes reflecting an intermediate stage of evolution for showers merging into the sporadic background, where evolved streamlets are still detectable, but direct orbital linkage with parents is no longer possible.

The "arc" of stream radiant maxima seen in Fig. 3 follows nearly the same radiant pattern as a feature of sporadic radiants first reported by Campbell-Brown (2008) as part of a separate examination of sporadic meteor radiants measured by CMOR. The "ring" structure found in that study was located about 55° away from the apex direction, was approximately 10° in width, and in the high number statistics used for the sporadic study, it completely surrounds the apex direction. The "ring" feature varies in visibility throughout the year, reflecting changes in strength. The sporadic ring was manifested as both a relative increase in radiant densities and in a marked difference in orbital elements for the population of meteoroids having radiants along the ring relative to those in sur-

Table 2 (continued)

#### Table 2

For all the showers from Table 1, mean orbits are computed using the radiant and velocity observed at the time of maximum. The standard orbital elements are given with a (semi-major axis), *q* (perihelion) in AU, while inclination (*i*), argument of perihelion ( $\omega$ ) and argument of the ascending node ( $\Omega$ ) are in degrees referenced to J2000.0. *N*<sub>orb</sub> refers to the number of orbits used to compute the wavelet coefficient at the time of maximum and hence is a measure of the number of orbits being used to compute the mean stream orbit.

| IAU        | $\lambda_{max}$ | а      | е      | q      | i     | ω      | $\Omega$ | Norb |
|------------|-----------------|--------|--------|--------|-------|--------|----------|------|
| code       |                 |        |        |        |       |        |          |      |
| A DC       | 20              | 1 5 2  | 0.027  | 0.2402 | 4.5   | 40.40  | 20.0     | 2000 |
| APS        | 26              | 1.53   | 0.837  | 0.2493 | 4.5   | 49.49  | 26.0     | 2608 |
| LYR        | 32              | 10.85  | 0.916  | 0.9149 | 80.0  | 215./1 | 32.0     | 1197 |
| BPG        | 36              | 2.76   | 0.890  | 0.3036 | 62.7  | 61.11  | 36.0     | 1105 |
| ARC        | 37              | 6.51   | 0.875  | 0.8099 | 69.9  | 125.55 | 37.0     | 1006 |
| LLY        | 41              | 0.95   | 0.261  | 0.7033 | 68.9  | 297.35 | 41.0     | 1256 |
| MAL        | 42              | 11.14  | 0.935  | 0.7249 | 70.6  | 114.76 | 42.0     | 881  |
| FTA        | 45              | 4 1 4  | 0 874  | 0 5232 | 162.9 | 88 15  | 45.0     | 3274 |
| DTR        | 46              | 4 74   | 0.868  | 0.5613 | 16.2  | 92.58  | 46.0     | 519  |
| 700        | 40              |        | 0.000  | 0.3013 | 10.2  | 210 22 | 47.0     | 515  |
| ZOP        | 47              | 0.92   | 0.074  | 0.2997 | 19.9  | 210.22 | 47.0     | 2070 |
| NOC        | 49              | 1.44   | 0.919  | 0.1167 | 34.8  | 32.13  | 49.0     | 2279 |
| SCT        | 49              | 5.21   | 0.920  | 0.4170 | 41.1  | 257.00 | 229.0    | 400  |
| OCE        | 49              | 1.70   | 0.924  | 0.1282 | 34.8  | 215.17 | 229.0    | 2205 |
| DDT        | 53              | 2.95   | 0.847  | 0.4523 | 19.6  | 78.17  | 53.0     | 823  |
| XIC        | 54              | 1.00   | 0.546  | 0.4538 | 3.7   | 235.95 | 234.0    | 709  |
| EAU        | 54              | 0.89   | 0.624  | 0.3356 | 59.2  | 317.61 | 54.0     | 991  |
| MVI        | 54              | 0.88   | 0.446  | 0.4900 | 66.9  | 312.18 | 54.0     | 1270 |
|            | 54              | 0.00   | 0.954  | 0.4500 | 50.1  | 20.69  | 54.0     | 1096 |
| CNA        | 54              | 0.75   | 0.017  | 0.1050 | 50.1  | 20.00  | 224.0    | 1080 |
| SIVIA      | 54              | 1.61   | 0.817  | 0.2957 | 4.4   | 235.01 | 234.0    | 3289 |
| TOP        | 55              | 1.24   | 0.898  | 0.1264 | 48.7  | 328.11 | 55.0     | 892  |
| ECY        | 60              | 0.69   | 0.467  | 0.3691 | 67.7  | 4.16   | 60.0     | 446  |
| PSP        | 63              | 0.76   | 0.800  | 0.1512 | 57.7  | 23.88  | 63.0     | 357  |
| TSR        | 65              | 0.93   | 0.745  | 0.2368 | 54.3  | 322.68 | 65.0     | 625  |
| ZPE        | 74              | 1.65   | 0.800  | 0.3305 | 3.9   | 58.84  | 74.0     | 2304 |
| IMC        | 74              | 57.24  | 0.000  | 0 5773 | 68.3  | 97.68  | 74.0     | 584  |
| S7C        | 20              | 1.04   | 0.026  | 0.0650 | 56.1  | 150.00 | 260.0    | 426  |
| ADI        | 00              | 1.04   | 0.950  | 0.0000 | 20.1  | 155.00 | 200.0    | 420  |
| AKI        | 81              | 1.75   | 0.961  | 0.0692 | 28.0  | 25.57  | 81.0     | 3592 |
| DLT        | 86              | 1.50   | 0.925  | 0.1123 | 22.6  | 211.69 | 266.0    | 2059 |
| ZER        | 93              | 3.22   | 0.928  | 0.2301 | 103.5 | 232.64 | 273.0    | 390  |
| BTA        | 94              | 1.94   | 0.802  | 0.3833 | 3.5   | 246.47 | 274.0    | 1386 |
| KCT        | 94              | 0.75   | 0.886  | 0.0850 | 35.7  | 198.05 | 274.0    | 523  |
| EPE        | 96              | 4.15   | 0.970  | 0.1263 | 62.3  | 38.83  | 96.0     | 1139 |
| BCM        | 100             | 67.75  | 0.993  | 0 5083 | 63.7  | 89.78  | 100.0    | 507  |
| IDD        | 100             | 062    | 0.555  | 0.2155 | 67.4  | 257.06 | 100.0    | 206  |
| JDF        | 100             | 0.02   | 0.051  | 0.2155 | 07.4  | 245.00 | 100.0    | 170  |
| OPG        | 100             | 0.66   | 0.605  | 0.2616 | 66.0  | 345.97 | 100.0    | 470  |
| JAD        | 101             | 0.89   | 0.693  | 0.2748 | 69.7  | 38.44  | 101.0    | 615  |
| NZC        | 101             | 1.55   | 0.925  | 0.1160 | 39.5  | 327.49 | 101.0    | 1689 |
| JTR        | 104             | 1.54   | 0.900  | 0.1548 | 60.9  | 217.82 | 284.0    | 513  |
| MIC        | 104             | 1.68   | 0.935  | 0.1088 | 36.7  | 147.95 | 284.0    | 739  |
| EPG        | 105             | 0.79   | 0.780  | 0.1733 | 54.2  | 333.27 | 105.0    | 1271 |
| APG        | 106             | 0.58   | 0 841  | 0.0925 | 107 7 | 352.04 | 106.0    | 441  |
| PPS        | 106             | 2.09   | 0.590  | 0.8559 | 152.6 | 125.02 | 106.0    | 1395 |
| TDD        | 100             | 4.50   | 0.550  | 0.0555 | 104.4 | 01 16  | 100.0    | 657  |
| 1PK<br>DEO | 100             | 4.55   | 0.090  | 0.4017 | 104.4 | 01.10  | 100.0    | 1500 |
| BEQ        | 107             | 0.86   | 0.824  | 0.1517 | 48.3  | 331.99 | 107.0    | 1288 |
| ALA        | 109             | 1.04   | 0.033  | 1.0087 | 80.6  | 221.08 | 109.0    | 1163 |
| PCA        | 120             | 2.48   | 0.622  | 0.9378 | 83.4  | 143.06 | 120.0    | 1875 |
| CAP        | 123             | 2.26   | 0.742  | 0.5836 | 6.7   | 269.93 | 123.0    | 740  |
| SDA        | 126             | 2.20   | 0.970  | 0.0657 | 30.6  | 154.08 | 306.0    | 4819 |
| ISC        | 128             | 1.02   | 0.788  | 0.2158 | 69.1  | 141.83 | 308.0    | 336  |
| OFR        | 134             | 0.86   | 0 504  | 0 4250 | 108 7 | 222.87 | 314.0    | 444  |
| AIN        | 135             | 32.65  | 0.901  | 0.4383 | 57.6  | 81.76  | 135.0    | 443  |
| DALL       | 125             | 2 10   | 0.507  | 0.1205 | 6F 6  | 120.06 | 215.0    | 1627 |
| PAU        | 155             | 5.10   | 0.955  | 0.1595 | 05.0  | 159.90 | 515.0    | 1057 |
| DMO        | 137             | 4.11   | 0.920  | 0.3274 | 41.1  | 245.62 | 317.0    | 3//  |
| XRI        | 137             | 3.24   | 0.986  | 0.0461 | 32.2  | 202.67 | 317.0    | 1089 |
| GER        | 138             | 3.15   | 0.686  | 0.9870 | 113.9 | 339.34 | 318.0    | 493  |
| NDA        | 139             | 1.70   | 0.944  | 0.0955 | 23.4  | 329.94 | 139.0    | 2096 |
| PER        | 140             | -9.91  | 1.096  | 0.9560 | 115.6 | 153.12 | 140.0    | 2024 |
| SIA        | 140             | 1 65   | 0.836  | 0 2709 | 40    | 127 51 | 320.0    | 2209 |
| ACT        | 153             | 0.82   | 0.602  | 0.2537 | 83    | 146.20 | 333.0    | 355  |
| VDD        | 155             | 10.52  | 1 0052 | 0.2337 | 575   | 140.20 | 150.0    | 262  |
| KDK        | 156             | -10.55 | 1.085  | 0.6969 | 57.5  | 142.10 | 156.0    | 202  |
| INIA       | 159             | 1.57   | 0.827  | 0.2705 | 6.9   | 308.07 | 159.0    | 1891 |
| ZCA        | 160             | 4.64   | 0.981  | 0.0883 | 16.6  | 212.57 | 340.0    | 949  |
| DPL        | 174             | 2.35   | 0.975  | 0.0585 | 20.2  | 204.80 | 354.0    | 1110 |
| KLE        | 183             | 6.79   | 0.987  | 0.0911 | 24.1  | 33.84  | 183.0    | 1366 |
| BUM        | 184             | -26.45 | 1.026  | 0.6868 | 85.0  | 112.24 | 184.0    | 565  |
| DSX        | 186             | 1.07   | 0.858  | 0.1511 | 22.0  | 212.99 | 6.0      | 1292 |
| LDR        | 196             | 1 3 2  | 0.264  | 0 9750 | 72.5  | 152.87 | 196.0    | 1337 |
| STA        | 100             | 1.55   | 0.204  | 0.2/07 | F 2.5 | 122.07 | 16.0     | 2/07 |
| OFF        | 190             | 1.72   | 0.020  | 0.3064 | 0.5   | 115.02 | 21.0     | 2497 |
| OEE        | 201             | 1.33   | 0.688  | 0.4140 | 26.4  | 115.82 | 21.0     | 3/5  |
| UCU        | 202             | -8.55  | 1.115  | 0.9810 | 103.3 | 165.74 | 202.0    | 1223 |

| IAU<br>code | $\lambda_{max}$ | а     | е     | q      | i     | ω      | Ω     | Norb  |
|-------------|-----------------|-------|-------|--------|-------|--------|-------|-------|
| OLD         | 203             | 0.71  | 0.610 | 0 2780 | 50.0  | 154 59 | 23.0  | 380   |
| ORI         | 208             | 5 47  | 0.895 | 0 5746 | 162.8 | 83.98  | 28.0  | 2536  |
| AUM         | 209             | 1.10  | 0.213 | 0.8665 | 70.5  | 105.32 | 209.0 | 1237  |
| LMI         | 210             | 4.63  | 0.875 | 0.5782 | 124.7 | 95.88  | 210.0 | 676   |
| XDR         | 211             | 1.05  | 0.231 | 0.9858 | 71.9  | 162.33 | 211.0 | 1363  |
| OBC         | 214             | 6.57  | 0.936 | 0.4174 | 80.9  | 281.50 | 214.0 | 355   |
| OKD         | 216             | 1.26  | 0.267 | 0.9208 | 72.2  | 130.83 | 216.0 | 1307  |
| NTA         | 219             | 2.06  | 0.830 | 0.3508 | 0.4   | 115.09 | 39.1  | 2281  |
| СТА         | 220             | 4.97  | 0.984 | 0.0807 | 12.3  | 328.49 | 220.0 | 1850  |
| OER         | 227             | 2.63  | 0.803 | 0.5176 | 18.4  | 94.11  | 47.0  | 623   |
| OME         | 234             | 2.49  | 0.833 | 0.4174 | 34.1  | 105.79 | 54.0  | 431   |
| LEO         | 237             | 2.52  | 0.610 | 0.9838 | 162.0 | 171.11 | 237.0 | 2268  |
| THA         | 237             | 1.13  | 0.897 | 0.1160 | 27.8  | 330.07 | 237.0 | 1180  |
| NDD         | 241             | 4.61  | 0.786 | 0.9856 | 39.5  | 185.41 | 241.0 | 536   |
| GTA         | 241             | 1.18  | 0.507 | 0.5825 | 4.9   | 102.63 | 61.0  | 426   |
| NID         | 241             | 3 76  | 0737  | 0 9874 | 74.9  | 181.09 | 241.0 | 2059  |
| RBO         | 242             | 2.64  | 0.781 | 0.5774 | 73.0  | 93.07  | 242.0 | 606   |
| NOO         | 246             | 12.01 | 0.991 | 0.1066 | 26.0  | 142.37 | 66.0  | 1923  |
| ACA         | 247             | 3.70  | 0.862 | 0.5114 | 67.1  | 92.32  | 67.0  | 338   |
| GCM         | 257             | 3 13  | 0.881 | 0 3732 | 70.2  | 109.05 | 77.0  | 429   |
| HYD         | 258             | 14 43 | 0.982 | 0 2578 | 131.3 | 119 33 | 78.0  | 604   |
| DTA         | 261             | -0.46 | 1 504 | 0 2339 | 35.5  | 285.63 | 261.0 | 1208  |
| MON         | 261             | 8.88  | 0.978 | 0.1936 | 32.4  | 128.65 | 81.0  | 1598  |
| GEM         | 261             | 1.35  | 0.898 | 0.1373 | 23.2  | 324.95 | 261.0 | 10381 |
| NGM         | 262             | -0.38 | 1.217 | 0.0825 | 26.7  | 132.01 | 82.0  | 545   |
| DCM         | 266             | 7.04  | 0.937 | 0.4434 | 63.7  | 97.80  | 86.0  | 558   |
| DHY         | 266             | 4.82  | 0.915 | 0.4073 | 105.9 | 103.08 | 86.0  | 602   |
| DLM         | 268             | 6.73  | 0.916 | 0.5662 | 135.5 | 263.57 | 268.0 | 1304  |
| URS         | 270             | 24.11 | 0.961 | 0.9470 | 55.5  | 202.53 | 270.0 | 1021  |
| BMO         | 271             | 3.84  | 0.863 | 0.5264 | 33.0  | 90.20  | 91.0  | 363   |
| SSE         | 275             | 1.90  | 0.916 | 0.1596 | 62.4  | 41.20  | 275.0 | 1075  |
| ILE         | 282             | 5.34  | 0.990 | 0.0517 | 107.9 | 334.71 | 282.0 | 1160  |
| KHY         | 283             | 1.04  | 0.793 | 0.2149 | 66.5  | 140.08 | 103.0 | 621   |
| OUA         | 283             | 3.35  | 0.709 | 0.9746 | 72.4  | 168.14 | 283.0 | 6614  |
| AHY         | 286             | 8.62  | 0.966 | 0.2910 | 57.0  | 115.64 | 106.0 | 770   |
| XSA         | 288             | 2.18  | 0.784 | 0.4708 | 6.0   | 79.31  | 288.0 | 896   |
| BSX         | 292             | 1.84  | 0.962 | 0.0694 | 149.7 | 153.55 | 112.0 | 595   |
| IHY         | 292             | 0.97  | 0.708 | 0.2826 | 73.0  | 136.00 | 112.0 | 316   |
| CVN         | 293             | 9.40  | 0.908 | 0.8659 | 93.3  | 221.54 | 293.0 | 1105  |
| XCB         | 295             | 2.84  | 0.718 | 0.8007 | 79.3  | 123.70 | 295.0 | 2621  |
| LBO         | 296             | 1.36  | 0.291 | 0.9647 | 78.3  | 203.90 | 296.0 | 2743  |
| TCB         | 296             | 1.04  | 0.172 | 0.8601 | 76.0  | 98.20  | 296.0 | 3560  |
| GUM         | 299             | 4.20  | 0.772 | 0.9593 | 51.1  | 199.54 | 299.0 | 694   |
| MHY         | 300             | 1.08  | 0.770 | 0.2489 | 71.8  | 135.79 | 120.0 | 497   |
| DCS         | 301             | 2.67  | 0.792 | 0.5559 | 7.3   | 270.86 | 121.0 | 428   |
| AAN         | 312             | 1.94  | 0.929 | 0.1367 | 64.3  | 141.99 | 132.0 | 1228  |
| FCB         | 324             | 0.95  | 0.620 | 0.3619 | 30.5  | 310.97 | 324.0 | 330   |
| MKA         | 350             | 1.83  | 0.872 | 0.2339 | 4.6   | 50.12  | 350.0 | 1457  |
|             |                 |       |       |        |       |        |       |       |

rounding regions (cf. Campbell-Brown, 2008). In particular, the inner edge of the ring shows a noticeable dip in radiant density. Campbell-Brown (2008) ascribed the depleted number of radiants in the inner part of the ring to a higher collisional probability for meteoroids with radiants in the ring (such particles having a  $\sim$ 1 AU). More recently, Wiegert et al. (2009) have suggested that the ring structure is an expected consequence of the Kozai resonance for meteoroids with small ( $a \sim$  1–2 AU) semi-major axis which are spiraling inward under the Poynting–Robertson effect.

To investigate possible linkages among our streams, we have performed two quantitative comparisons, one using orbital secular invariants and the other the standard orbital *D*'-criterion (Drummond, 1981).

The first approach is to use the orbital secular invariants proposed by Valsecchi et al. (1999) that include the velocity of the meteoroid when it collides with the Earth in units of Earth's orbital velocity, *U*, a value related to the Tisserand invariant (relative to the Earth) as  $U = (3 - T)^{1/2}$ . The other variable is the angle between the geocentric radiant and the apex direction of the Earth's motion,  $\Theta$ .



Fig. 2. The distribution throughout the year and as a function of geocentric velocity for all 117 streams found in our survey. The horizontal lines delineate the time period where each shower is active. The circle denotes the time of maximum and the size of the circle is linearly proportional to the strength of the shower.



**Fig. 3.** The radiant location for all showers shown in sun-centered coordinates. The circles represent the approximate locations and extents of the major sporadic sources as given in Jones and Brown (1993). The Sun is shown by a dark circle at the origin; the center of the plot (marked with an *X*) is the apex of the Earth's way.

In practice,  $\cos \Theta$  is used because it depends linearly on orbital energy (also a quasi-constant of motion). As shown by Valsecchi et al. (1999) and Jopek et al. (1999), meteoroids starting from a common orbit and evolving purely under gravitational perturbations have values of (U,  $\cos \Theta$ ) which are similar. Because these quantities are linked to secular invariants, recently evolved meteoroids starting from a common stream will have similar (U,  $\cos \Theta$ ). Here we use the mean stream orbits to examine possible interstream linkages. We emphasize that common values of (U,  $\cos \Theta$ ) are a necessary but not sufficient condition to establish that two separate streams are evolved components of a common parent. To establish more rigorously interstream links requires following numerically the evolution of stream orbits over long periods, including the effects of radiation forces, a process beyond the scope of this work.

Fig. 4 shows the locations of all our mean stream orbits in a  $\cos \Theta$  vs. *U* plot. Here the upper line corresponds to hyperbolic orbits intersecting the Earth's orbit; those below the lower solid line are Aten-like orbits which are mostly interior to the Earth's orbit.

Fig. 5 is the same plot but for all comets and near-Earth asteroids whose orbits get closer than 0.05 AU to the Earth. Most of our showers are located in the portion of the diagram proximal to nearly isotropic comets (NIC) and Halley-type comets (HTC). There are a few showers located on the periphery of the near-Earth asteroid (NEA)/Jupiter-Family comet (JFC) portion of the diagram. The two showers where a linkage with NEAs is most probable are the Gamma Taurids (GTA) and newly identified Daytime xi<sub>2</sub> Cetids (XIC). Both showers are strongly above background during their time of activity, leaving little question that they are real showers. We find no linkage with a specific NEA in either case, not unsurprising given the fast evolution of shower meteoroids in such small orbits.

In Fig. 6 we show the expected magnitude and timescales of spread for meteoroids released from different classes of parent bodies. Here our simulated meteoroids have masses of  $\sim 10^{-8}$  kg, representative of our survey population, and the simulation proceeds for 50,000 years. The simulations were run with a symplectic



**Fig. 4.** All showers detected by our survey plotted as a function of *U* and  $\cos \Theta$  (for definitions of these quantities see text and Valsecchi et al. (1999)). The upper solid line is the cutoff for Earth-intersecting parabolic orbits (orbits above this line are unbound with respect to the Sun) while the lower line represents objects on Aten-like orbits (where *a* < 1 AU).



Fig. 5. The same plot as Fig. 4 but for all comets and asteroids with orbital intersections with the Earth less than 0.05 AU. The populations are distinct with the longer period comets (including nearly isotopic (NIC) comet and Halley-type comets (HTCs) using the classification system proposed by Levison (1996)) lying on the parabolic line and JFCs shifted to lower intersection velocities with some overlap with the NEA population. Data for cometary orbits are from Green (2008) while those for near Earth objects are from the NeoDys website (http://newton.dm.unipi.it/neodys/, downloaded April 28, 2009).

numerical integration code (Wisdom and Holman, 1991) that handles close encounters by the Chambers hybrid method (Chambers, 1999). Poynting–Robertson drag was included and the particles beta (defined as the ratio of the reflected sunlight force to gravitational force on the particle) assumed to be 4e-3, corresponding to a few hundred micron diameter particle. Note that the meteoroids are plotted only when their orbits are within 0.05 AU of the Earth; U and  $\cos \Theta$  are undefined for non-intersecting orbits. As expected, objects on higher inclination orbits show very slow evolution away from their parent. For NIC and HTCs, the variation of U,  $\cos \Theta$  with time is typically so small that links with parent objects should be possible over many tens of ka. What evolution does occur, relative to the parent body, tends to be parallel and close to the parabolic limit line. For meteoroids with JFC parents, we find that the ejected population spreads along a line parallel to the parabolic limit line and in some cases ultimately (after of order 10 ka depending on the starting orbit) the meteoroid orbits shrink sufficiently under the Poynting–Robertson effect that they move down into the Aten-orbit region.

It is difficult to generalize the timescales as they depend on the parent starting orbit, but it does suggest that our Aten-like and more evolved showers can potentially be best explained as having evolved from JFCs in this general way. Typical NEA starting orbits produce particles which evolve nearly perpendicular to the Aten line; however the specifics depend on the starting orbit and for some of our showers NEA parents certainly cannot be ruled out.



**Fig. 6.** Evolutionary paths for meteoroids with mass of  $10^{-8}$  kg starting from four representative parent body orbits. A total of 20 test particles are ejected from the starting orbit of each parent and integrated forward in time to demonstrate general evolutionary behavior in *U*, cos  $\Theta$ . Only particles whose orbits intersected the Earth within 0.05 AU at any particular epoch are shown. The integrations continue for 50 ka in the plots – the parent (starting) orbits are shown as enlarged triangle symbols in each plot and the specific parent chosen for the example is given in each graph. Note that the particles farthest from the starting orbit are typically the oldest. Upper left (1P/Halley) represents the Halley-type comets, upper right (26P/Giacobin-Zinner) represents Jupiter-Family comets, lower left (109P/Swift-Tuttle) represents another example of a longer period Halley-type comet (closer to being a nearly isotropic – returning comet than 1P/Halley) and (bottom right) 3361 Orpheus is a near-Earth asteroid.

Linkages with the original parent, for either NEAs or JFCs, would no longer be possible after less than 10 ka in most cases.

To search for potential stream linkages, we first estimate the error in our position for  $(U, \cos \Theta)$  based on a presumed mean error of 5% in measured mean stream velocity and 2° in radiant location at the time of peak. We then select multiple showers as potentially linked if their values of  $(U \text{ and } \cos \Theta)$  overlap within error and if they are separable from other shower concentrations. The results of this procedure are a series of seven possible "complexes" which we name based on the member shower showing the highest activity in our data. By definition these complexes would be necessarily young (based on the timescale of the spread in U and  $\cos \Theta$  in our simulations). Table 3 shows the stream "complexes" linked in this way.

Among these complexes, the LLY, SZC and SDA complexes have radiant distributions overlapping the sporadic "ring" feature discussed earlier and shown in Fig. 7. Indeed, it appears that the ring is composed of a series of possibly related streams occurring throughout the year, reflecting either a true common parental linkage or a common evolutionary end state common to many showers, perhaps driven by the Kozai resonance. Several of these streams also makeup part of the north toroidal sporadic source. That sporadic source, in particular, shows wide variation in strength through the year (Campbell-Brown and Jones, 2006) and we suggest this may reflect the large contributions from these previously unrecognized showers to its activity. More detailed modeling is needed to resolve this linkage. Several of the SDA-complex showers also have a probable link to the previously identified 96P/Machholz complex (cf. Jenniskens, 2006).

The EPG and OCE complexes may also be related to the sporadic ring, though the former is located closer to the inner part of the ring and the latter to the outside of the ring. Notably, many of the showers in the EPG complex are quite weak and all are on Aten-like orbits implying highly evolved orbits (cf. Morbidelli and Gladman, 1998), similar to the LLY complex.

The SMA complex is a series of twin/branch showers which appear to be linked to the Taurid complex, including 2P/Encke, a selection of asteroids and streams (cf. Asher and Clube, 1997). In our data, all streams have radiants in either the helion or anti-helion source with the mean stream orbits showing close linkages to numerous NEAs, many of which are commonly associated with the Taurid complex and 2P/Encke. However, whether all of these are real or chance links is not clear. The NTA and BTA showers also have *U* and cos  $\Theta$  values close to this complex, though they fall just barely outside the cluster complex based on our adopted linkage criteria. All these showers seem very probably to have a common

#### Table 3

Stream members among the seven major complexes identified in our survey.

| Complex | IAU/provisional name          | Code        | $\lambda - \lambda_o$ | β          | $\sigma_{ m wave}$ | а     | е    | q    | i        | ω         | Ω   | U     | $\cos \Theta$  | Parent              |
|---------|-------------------------------|-------------|-----------------------|------------|--------------------|-------|------|------|----------|-----------|-----|-------|----------------|---------------------|
| EPG     | Epsilon Pegasids              | EPG         | 226.5                 | 25.8       | 41                 | 0.79  | 0.78 | 0.17 | 54       | 333       | 105 | 1.04  | -0.65          |                     |
|         | Phi Pegasids                  | PPEG        | 313                   | 19.5       | 10                 | 0.75  | 0.85 | 0.11 | 50       | 21        | 54  | 1.04  | -0.68          |                     |
|         | Kappa Cetids                  | KCET        | 315.8                 | -13.6      | 7                  | 0.75  | 0.89 | 0.09 | 36       | 198       | 274 | 1.00  | -0.67          |                     |
|         | Xi Cygnids                    | XCYG        | 272.7                 | 43.5       | 6                  | 0.69  | 0.47 | 0.37 | 68       | 4         | 60  | 1.00  | -0.72          |                     |
|         | Psi Pegasids                  | PSPE        | 310.5                 | 24.9       | 5                  | 0.76  | 0.80 | 0.15 | 58       | 24        | 63  | 1.06  | -0.68          |                     |
| LLY     | Lambda Lyrids                 | LLY         | 248.3                 | 51         | 42                 | 0.95  | 0.26 | 0.70 | 69       | 297       | 41  | 1.13  | -0.59          |                     |
|         | Beta Equuleids                | BEQ         | 221                   | 21.6       | 36                 | 0.86  | 0.82 | 0.15 | 48       | 332       | 107 | 1.07  | -0.61          |                     |
|         | May Vulpeculids               | MVUL        | 238.6                 | 44.6       | 27                 | 0.88  | 0.45 | 0.49 | 67       | 312       | 54  | 1.10  | -0.61          |                     |
|         | Epsilon Aquilids              | EAQU        | 226.5                 | 36.5       | 21                 | 0.89  | 0.62 | 0.34 | 59       | 318       | 54  | 1.06  | -0.59          |                     |
|         | Theta Serpentids              | TSER        | 221                   | 28.7       | 17                 | 0.93  | 0.75 | 0.24 | 54       | 323       | 65  | 1.08  | -0.58          | 2008 KP             |
| OCE     | Southern Daytime omega-Cetids | OCE         | 331                   | -13.1      | 76                 | 1.70  | 0.92 | 0.13 | 35       | 215       | 229 | 1.26  | -0.47          |                     |
|         | Northern June Aquilids        | NZC         | 210.6                 | 13.6       | 45                 | 1.55  | 0.93 | 0.12 | 39       | 327       | 101 | 1.27  | -0.50          |                     |
|         | Northern Daytime omega-Cetids | NOC         | 329.3                 | 12.7       | 38                 | 1.44  | 0.92 | 0.12 | 35       | 32        | 49  | 1.24  | -0.49          |                     |
|         | Alpha Ursae Majorids          | AUMA        | 288.1                 | 54.4       | 19                 | 1.10  | 0.21 | 0.87 | 71       | 105       | 209 | 1.19  | -0.55          |                     |
|         | October kappa Draconids       | OKDR        | 286.7                 | 55.8       | 17                 | 1.26  | 0.27 | 0.92 | 72       | 131       | 216 | 1.24  | -0.54          |                     |
|         | Daytime lambda Taurids        | DLI         | 331.6                 | -8.4       | 13                 | 1.50  | 0.93 | 0.11 | 23       | 212       | 266 | 1.21  | -0.47          | C1/33 KI            |
|         | Northern delta Aquarilds      |             | 208.7                 | 7.8        | 13                 | 1.70  | 0.94 | 0.10 | 23       | 330       | 139 | 1.27  | -0.48          |                     |
|         | Xi Draconide                  | LDKA<br>XDR | 279.9                 | 57.7       | 11<br>Q            | 1.55  | 0.20 | 0.98 | 75       | 162       | 211 | 1.20  | -0.55          |                     |
|         | Microscopiids                 | MICR        | 270.9                 | _12.2      | 8                  | 1.28  | 0.23 | 0.99 | 37       | 148       | 211 | 1.24  | -0.55          |                     |
|         | Tau Ophiuchuiids              | ТОРН        | 2143                  | 17         | 7                  | 1.00  | 0.94 | 0.11 | 49       | 328       | 55  | 1.23  | -0.45          |                     |
| CNAA    | Couth Doutine Man Aristida    | CNAA        | 242.4                 | 20         |                    | 1.01  | 0.00 | 0.20 |          | 225       | 224 | 0.00  | 0.20           | 2001 0100           |
| SMA     | South Daytime May Arietids    | SMA         | 343.4                 | -3.9       | 34                 | 1.61  | 0.82 | 0.30 | 4        | 235       | 234 | 0.96  | -0.28          | 2001 QJ96           |
|         | Southern Taurius              | 51A<br>7DE  | 195.0                 | -4.2       | 30                 | 1.72  | 0.82 | 0.31 | ⊃<br>⊿   | 122       | 10  | 0.96  | -0.26          | 2007 KU17           |
|         | Daytime April Piscids         | ADS         | 343.5                 | 3.2<br>3.1 | 22                 | 1.05  | 0.80 | 0.55 | 4 5      | 39<br>40  | 26  | 1.00  | -0.25          | 2005 NZ6            |
|         | Northern jota Aquariids       | NIA         | 197.5                 | 3.4        | 8                  | 1.55  | 0.83 | 0.25 | 7        | 308       | 159 | 0.98  | -0.55          | 2003 N20            |
|         | Southern iota Aquariids       | SIA         | 197.3                 | -2.8       | 5                  | 1.57  | 0.84 | 0.27 | 4        | 128       | 320 | 0.99  | -0.31          | 2005 NZ6            |
|         | Davtime kappa Aquariids       | MKA         | 341                   | 2.9        | 4                  | 1.83  | 0.87 | 0.23 | 5        | 50        | 350 | 1.06  | -0.32          | 2007 KG7            |
| SDA     | Southorn dolta Aquariida      | SD 4        | 210.1                 | 76         | 179                | 2.20  | 0.07 | 0.07 | 21       | 154       | 206 | 1 20  | 0.50           | Supgrazore          |
| SDA     | Quadrantide                   | OLIA        | 210.1                 | -7.0       | 1/0                | 2.20  | 0.97 | 0.07 | 72       | 154       | 283 | 1.39  | -0.50          | 2003 FH1            |
|         | Davtime Arietids              | ARI         | 329.3                 | 75         | 125                | 1.75  | 0.96 | 0.07 | 28       | 26        | 285 | 1.55  | -0.44<br>-0.51 | SOHO = 2002 R4      |
|         | November omega Orionids       | NOO         | 204 5                 | -8.1       | 83                 | 12.01 | 0.99 | 0.07 | 26       | 142       | 66  | 1.31  | -0.40          | 50110 2002 KT       |
|         | December Canis Majorids       | DCMA        | 210.9                 | -36        | 50                 | 7.04  | 0.94 | 0.44 | 64       | 98        | 86  | 1.43  | -0.41          |                     |
|         | Lambda Bootids                | LBO         | 262.1                 | 54.4       | 42                 | 1.36  | 0.29 | 0.96 | 78       | 204       | 296 | 1.35  | -0.57          |                     |
|         | Alpha Canis Majorids          | ACMA        | 215.8                 | -40.3      | 36                 | 3.70  | 0.86 | 0.51 | 67       | 92        | 67  | 1.40  | -0.44          |                     |
|         | Xi Coronae Borealids          | XCB         | 302.5                 | 51.2       | 35                 | 2.84  | 0.72 | 0.80 | 79       | 124       | 295 | 1.49  | -0.53          |                     |
|         | Alpha Hydrids                 | AHY         | 207.4                 | -26.4      | 33                 | 8.62  | 0.97 | 0.29 | 57       | 116       | 106 | 1.43  | -0.41          |                     |
|         | Sigma Serpentids              | SSE         | 325.4                 | 20.5       | 22                 | 1.90  | 0.92 | 0.16 | 62       | 41        | 275 | 1.40  | -0.53          |                     |
|         | Daytime kappa Leonids         | KLE         | 335                   | 6.8        | 21                 | 6.79  | 0.99 | 0.09 | 24       | 34        | 183 | 1.44  | -0.43          |                     |
|         | April Sigma Cygnids           | ASCY        | 314.4                 | 55         | 21                 | 6.51  | 0.88 | 0.81 | 70       | 126       | 37  | 1.41  | -0.41          | 2002 5111           |
|         | November Draconids            |             | 268.4                 | 62.2       | 18                 | 3.76  | 0.74 | 0.99 | 75       | 181       | 241 | 1.43  | -0.46          | 2003 EH I           |
|         | Davtime zeta Cancrids         |             | 320.7                 | -42.1      | 17                 | 4 64  | 0.99 | 0.38 | 17       | 213       | 340 | 1.40  | -0.41<br>-0.43 |                     |
|         | Piscis Austrinids             | PAU         | 213.5                 | -18.5      | 15                 | 3 10  | 0.96 | 0.03 | 66       | 140       | 315 | 1.41  | -0.52          |                     |
|         | Iuly Taurids                  | ITAU        | 324.6                 | -20.5      | 14                 | 1.54  | 0.90 | 0.15 | 61       | 218       | 284 | 1.35  | -0.55          |                     |
|         | Daytime xi Orionids           | XRI         | 329.9                 | -6.2       | 12                 | 3.24  | 0.99 | 0.05 | 32       | 203       | 317 | 1.48  | -0.50          |                     |
|         | Epsilon Perseids              | EPE         | 328.2                 | 16.9       | 10                 | 4.15  | 0.97 | 0.13 | 62       | 39        | 96  | 1.52  | -0.51          | 96P/Machholz        |
|         | Chi Taurids                   | CTAU        | 205.8                 | 3.5        | 8                  | 4.97  | 0.98 | 0.08 | 12       | 328       | 220 | 1.42  | -0.43          |                     |
|         | Beta Camelopardalids          | BCAM        | 331.1                 | 38.2       | 8                  | 67.75 | 0.99 | 0.51 | 64       | 90        | 100 | 1.46  | -0.39          |                     |
|         | Beta Pegasids                 | BPEG        | 327.4                 | 29.1       | 7                  | 2.76  | 0.89 | 0.30 | 63       | 61        | 36  | 1.39  | -0.47          |                     |
|         | Delta Monocerotids            | DEMO        | 216.3                 | -33.2      | 7                  | 3.13  | 0.88 | 0.37 | 70       | 109       | 177 | 1.45  | -0.49          | C1 100D1            |
|         | August Lynxids                | ALYN        | 335                   | 35./       | 6                  | 32.65 | 0.99 | 0.44 | 58       | 82        | 135 | 1.41  | -0.36          | C1402D1             |
|         | Nilo Boolids                  |             | 220.0                 | 42.9       | 5                  | 2.64  | 0.78 | 0.58 | 73<br>20 | 93<br>205 | 242 | 1.42  | -0.49          |                     |
|         | Daytine pr Leonius            | DILL        | 550.5                 | -4.0       | 5                  | 2.55  | 0.50 | 0.00 | 20       | 205       | 774 | 1.55  | -0.45          |                     |
| SZC     | Southern June Aquilids        | SZC         | 219.8                 | -13.3      | 46                 | 1.04  | 0.94 | 0.07 | 56       | 159       | 260 | 1.28  | -0.63          |                     |
|         | Theta Coronae Borealids       | ICB         | 282.2                 | 51.5       | 35                 | 1.04  | 0.17 | 0.86 | /6       | 98        | 296 | 1.25  | -0.61          |                     |
|         | Alpha Lacertide               |             | 224.7                 | -29.3      | 24<br>19           | 1.08  | 0.77 | 1.01 | 72<br>81 | 130       | 120 | 1.29  | -0.61          |                     |
|         | May Lacertaids                | MLAC        | 319 /                 | 50.2       | 10                 | 11.04 | 0.05 | 0.72 | 71       | 115       | 42  | 1.51  | -0.04          |                     |
|         | January Hydrids               | IHYR        | 228.7                 | -32.1      | 12                 | 0.97  | 0.34 | 0.72 | 73       | 136       | 112 | 1.40  | -0.64          |                     |
|         | Iuly Andromedids              | IAND        | 310                   | 32.7       | 10                 | 0.89  | 0.69 | 0.27 | 70       | 38        | 101 | 1.19  | -0.64          |                     |
|         | Iota Sculptids                | ISC         | 224.6                 | -27.6      | 9                  | 1.02  | 0.79 | 0.22 | 69       | 142       | 308 | 1.26  | -0.62          |                     |
|         | Nu Hydrids                    | NHYD        | 223.1                 | -27.3      | 7                  | 1.04  | 0.79 | 0.21 | 67       | 140       | 103 | 1.24  | -0.61          |                     |
| LIRS    | Ursids                        | LIRS        | 221.1                 | 72.8       | 35                 | 24.11 | 0.96 | 0.95 | 56       | 203       | 270 | 1 1 9 | -0.19          | 8P/tuttle           |
| 013     | Gamma Ursae Minorids          | GUMI        | 222.6                 | 75.1       | 13                 | 4 20  | 0.77 | 0.96 | 51       | 200       | 299 | 1.06  | -0.15          | 8P/tuttle           |
|         | Daytime Delta Triangulids     | DDTR        | 351.1                 | 18.5       | 8                  | 2.95  | 0.85 | 0.45 | 20       | 78        | 53  | 0.97  | -0.14          | 2002 SQ41 (Secular) |
|         | Beta Monocerotids             | BMON        | 191.3                 | -31.8      | 8                  | 3.84  | 0.86 | 0.53 | 33       | 90        | 91  | 1.04  | -0.16          | 2005 UJ159          |
|         |                               |             |                       |            |                    |       |      |      |          |           |     |       |                |                     |

progenitor and interestingly do not overlap in their periods of activity, yet are active for a total of almost half a year. From simulations, Wiegert et al. (2009) and Stohl (1986) have suggested that

most of the sporadic activity from the helion/anti-helion sources originates from 2P/Encke; possibly the SMA complex represents linked coherent streams in the broader Taurid complex.



Fig. 7. Radiant locations at the time of maxima in sun-centered ecliptic coordinates for showers linked to the LLY, SZC and SDA complexes. These shower radiants follow the sporadic "ring" first identified by Campbell-Brown (2008).

Finally, a cluster of four showers linked to the Ursids is particularly noteworthy. First, the newly identified Gamma Ursae Minorids (GUM) has a radiant only a few degrees from the Ursid radiant in sun-centered ecliptic coordinates, a similar speed and occurs less than 20 days after the peak of the Ursid shower. We note that the Ursid velocity is systematically underestimated in our data because of poor radiant geometry relative to our remote link directions, a systematic bias first noted in paper I. It is not clear how this shower may relate to the Ursids and 8P/Tuttle - it might be a random interloper or may hint at a more complex evolutionary link between the showers and 8P/Tuttle. Also linked to these showers via possible secular evolutionary tracks is the Beta Monocerotids, a shower occurring at the same time as the peak of the Ursids and somewhat unusual in that a search for possible parents produced a strong link (D' < 0.05) with the Asteroid 2005 U[159 at close to the 95% confidence level (Wiegert and Brown, 2004). Similarly, the fourth shower in this complex, the Daytime Delta Triangulids, has a plausible link to 2002 SQ41 based on comparison of secular invariants of the two orbits. This complex hints at an old, large scale disintegration possibly associated with the evolution of 8P/Tuttle, but more detailed simulations are clearly needed.

#### 5.2. Individual stream linkages: parent bodies and other showers

The second approach we use to generate possible interstream linkages and links to parent bodies is the standard orbital clustering discriminant, the D-criterion (Drummond, 1981). Table 4 shows streams and their potential parent bodies linked in this manner. We adopt a D' < 0.1 as significant, noting that errors in radiant location and speed make this a somewhat arbitrary choice. Many of these shower associations may be one single stream that our linking algorithm has identified as two separate streams (e.g. PSP and PHP) but where the activity level drops below our  $3\sigma$ threshold for some days between the showers or where low activity levels lead to radiant uncertainties of more than 3° effectively cutting the shower linkage chain. We term these associated showers in the table. Showers showing similar orbits, but having widely separated periods of activity (not obvious twins or branches) we term linked, while individual streams with multiple Earth intersections as described earlier are listed as branches or twins with other streams in the table.

Some significant, new possible linkages not yet discussed in other literature or found in paper I include:

- 1. Theta Serpentids (TSR) and 2008 KP: the newly recognized TSR shower is both strong and fairly long-lived it is unquestionably a real shower and shows noticeable enhancement relative to the background for almost 3 weeks. It shows a possible link (D' < 0.1) to Asteroid 2008 KP (absolute magnitude of +18.8 corresponding to a diameter between 0.5 and 1.1 km, MPEC 2008-K45), which is on a similar high-inclination orbit. Interestingly, while asteroid stream associations are not uncommon at this significance level, such a close link at high inclinations is very unusual. Using the criteria outlined in Wiegert and Brown (2004) we find the orbital similarity at this level is unlikely to be random chance at close to the 90% certainty level. Such a finding suggests 2008 KP to be a prime candidate as a recently extinct cometary nucleus and warrants follow-on physical observations.
- 2. August Lyncids (ALN) and Comet C1402 D1: the new ALN minor shower is detectable over a 3 week period, though it is only of modest activity relative to the background for most of this time. However, the  $6\sigma$  detection at the time of maximum is clearly significant and examination of the yearly background level of activity at this ecliptic radiant location shows the peak very clearly. The association with the great daylight comet of 1402 is at a level better than D' < 0.09 and is one of the best comet – shower linkages in our survey. The nodal longitudes of the shower and comet, in particular, agree to better than  $0.5^{\circ}$ . This comet is notable as having been visible in daylight longer than any comet in history. However, the precision of the orbit is not good (Kronk, 1999) so the significance of this association, while interesting, is questionable.
- 3. *Quadrantids (QUA) and November I Draconids (NID)*: a surprising finding from our survey is an apparently new shower (NID) that appears to be directly associated with the Quadrantids. The NID has the same radiant location (in ecliptic coordinates) and speed as the QUA and both have overlapping periods of activity. Indeed, our automatic algorithm linked portions of the showers as though they were a single long-duration shower, extending the QUA period of activity into November. From our observations, we interpret the NID as simply an early extension of the QUA. Fig. 8 shows the combined NID/QUA radiant drift, activity and velocity variation with the match in radiant drift and velocity being good. Near the QUA maximum some deviation in the apparent rate of change of the dec drift and drift in *V*<sub>g</sub> is apparent. We speculate this may reflect two different components in the stream a long-lived, low-level of activity prior to QUA

- - - -

| Table 4                           |                                    |                                  |                               |
|-----------------------------------|------------------------------------|----------------------------------|-------------------------------|
| Possible interstream linkages and | d stream-parent body links based o | n orbital similarity using the D | /-criterion (Drummond, 1981). |

| IAU code | $\lambda_{max}$ | а            | е    | q     | i        | ω    | $\Omega$  | Shower linkages (twins/branches)                     | Possible parent bodies                 |
|----------|-----------------|--------------|------|-------|----------|------|-----------|------------------------------------------------------|----------------------------------------|
| BTA      | 94              | 1.94         | 0.80 | 0.38  | 4        | 246  | 274       | Linked with the NTA?                                 | 2007 UL12 (Taurid complex)             |
| NTA      | 219             | 2.06         | 0.83 | 0.35  | 0        | 115  | 39        | North branch to STA                                  | 2007 RU17                              |
| PHP      | 54              | 0.75         | 0.85 | 0.11  | 50       | 21   | 54        | Associated with PSP                                  |                                        |
| PSP      | 63              | 0.76         | 0.80 | 0.15  | 58       | 24   | 63        | Associated with PHP                                  |                                        |
| EPG      | 105             | 0.79         | 0.78 | 0.17  | 54       | 333  | 105       | Associated with BEQ                                  |                                        |
| TSR      | 65              | 0.93         | 0.75 | 0.24  | 54       | 323  | 65        |                                                      | 2008 KP                                |
| BEQ      | 107             | 0.86         | 0.82 | 0.156 | 48       | 332  | 107       | Associated with EPG                                  |                                        |
| NOC      | 49              | 1.44         | 0.92 | 0.12  | 35       | 32   | 49        | North branch to OCE                                  |                                        |
| OCE      | 49              | 1.70         | 0.92 | 0.13  | 35       | 215  | 229       | South branch to NOC                                  |                                        |
| DLT      | 86              | 1.50         | 0.93 | 0.11  | 23       | 212  | 266       | Twin of GEM?                                         | C1733 K1                               |
| NZC      | 101             | 1.55         | 0.93 | 0.12  | 40       | 327  | 101       | North branch to MIC                                  |                                        |
| MIC      | 104             | 1.68         | 0.94 | 0.11  | 37       | 148  | 284       | South branch to NZC                                  | Linked to start of SDA?                |
| XDR      | 211             | 1.28         | 0.23 | 0.99  | 72       | 162  | 211       | Associated with OKD                                  |                                        |
| OKD      | 216             | 1.26         | 0.27 | 0.92  | 72       | 131  | 216       | Link with LDR                                        |                                        |
| APS      | 26              | 1.53         | 0.84 | 0.25  | 5        | 49   | 26        | Link with NIA/SIA?                                   | 2005 NZ6                               |
| SMA      | 54              | 1.61         | 0.82 | 0.30  | 4        | 235  | 234       | South branch to ZPE; linked to NIA/SIA               | 2001 QJ96                              |
| ZPE      | /4              | 1.65         | 0.80 | 0.33  | 4        | 59   | /4        | North branch to SMA; linked to SIA/NIA               | 2005 1/20                              |
| SIA      | 140             | 1.65         | 0.84 | 0.27  | 4        | 128  | 320       | South branch to NIA                                  | 2005 NZ6                               |
| NIA      | 159             | 1.57         | 0.83 | 0.27  | /        | 308  | 159       | North branch to SIA; linked to SMA                   | 2007 BU17                              |
| SIA      | 190             | 1.72         | 0.82 | 0.31  | 5        | 122  | 250       | South Dranch to NTA; IIIK WITH SMA/ZPE               | 2007 KUT7                              |
| IVIKA    | 350             | 1.85         | 0.87 | 0.23  | 5<br>70  | 126  | 350       | According with MAI                                   | 2007 KG7                               |
| IMC      | 57<br>74        | 57.24        | 0.00 | 0.61  | 69       | 120  | 57<br>74  | Twin of PPO2                                         |                                        |
|          | 74<br>01        | 1 75         | 0.99 | 0.58  | 200      | 30   | 74<br>01  |                                                      | Supgrazors (SOHO 2002P4)               |
| FDF      | 06              | 1.75         | 0.90 | 0.07  | 20<br>62 | 20   | 06        |                                                      | 96P/Machholz                           |
|          | 135             | 32.65        | 0.07 | 0.15  | 58       | 82   | 135       |                                                      |                                        |
| ZCA      | 160             | 4 64         | 0.55 | 0.09  | 17       | 213  | 340       | Twin of CTA                                          | C1402 D1                               |
| CTA      | 220             | 4.04         | 0.98 | 0.05  | 12       | 329  | 220       | Twin of 7CA                                          |                                        |
| NID      | 241             | 3 76         | 0.30 | 0.00  | 75       | 181  | 241       | Associated with OLIA                                 | 2003 FH1 or 12P/Pons-Brooks            |
| RBO      | 242             | 2.64         | 0.78 | 0.58  | 73       | 93   | 242       | Twin of IMC?                                         |                                        |
| GCM      | 257             | 3.13         | 0.88 | 0.37  | 70       | 109  | 77        | Associated with DCM                                  |                                        |
| DCM      | 266             | 7.04         | 0.94 | 0.44  | 64       | 98   | 86        | Associated with GCM                                  |                                        |
| OUA      | 283             | 3.35         | 0.71 | 0.97  | 72       | 168  | 283       | Associated with NID                                  | 2003 EH1                               |
| LBO      | 296             | 1.36         | 0.29 | 0.96  | 78       | 204  | 296       | Linked to ALA?                                       |                                        |
| MAL      | 42              | 11.14        | 0.94 | 0.72  | 71       | 115  | 42        | Associated with ARC                                  |                                        |
| ALA      | 109             | 1.04         | 0.03 | 1.01  | 81       | 221  | 109       | Linked with LBO?                                     |                                        |
| ISC      | 128             | 1.02         | 0.79 | 0.22  | 69       | 142  | 308       | Linked with KHY/JHY                                  |                                        |
| KHY      | 283             | 1.04         | 0.79 | 0.21  | 67       | 140  | 103       | Associated with JHY/MHY; linked with ISC             |                                        |
| JHY      | 292             | 0.97         | 0.71 | 0.28  | 73       | 136  | 112       | Associated with MHY/KHY; linked with ISC             |                                        |
| MHY      | 300             | 1.08         | 0.77 | 0.25  | 72       | 136  | 120       | Associated with JHY/KHY; link with ISC               |                                        |
| DDT      | 53              | 2.95         | 0.85 | 0.45  | 20       | 78   | 53        |                                                      | 2002 SQ41                              |
| URS      | 270             | 24.11        | 0.96 | 0.95  | 56       | 203  | 270       | Associated with GUM?                                 | 8P/Tuttle                              |
| BMO      | 271             | 3.84         | 0.86 | 0.53  | 33       | 90   | 91        |                                                      | 2005 UJ159                             |
| GUM      | 299             | 4.20         | 0.77 | 0.96  | 51       | 200  | 299       | Associated with URS?                                 | 8P/Tuttle                              |
| LYR      | 32              | 10.85        | 0.92 | 0.91  | 80       | 216  | 32        |                                                      | C/1861 G1 (Thatcher)                   |
| ETA      | 45              | 4.14         | 0.87 | 0.52  | 163      | 88   | 45        | Twin of ORI                                          | 1P/Halley                              |
| DTR      | 46              | 4.24         | 0.87 | 0.56  | 16       | 93   | 46        | Twin of OER                                          |                                        |
| XIC      | 54              | 1.00         | 0.55 | 0.45  | 4        | 236  | 234       |                                                      | 2008 OX2                               |
| TPR      | 106             | 4.53         | 0.90 | 0.46  | 104      | 81   | 106       | Twin of DHY?                                         |                                        |
| CAP      | 123             | 2.26         | 0.74 | 0.58  | 7        | 270  | 123       | Twin of DCS                                          | 169P/NEAT (2002 EX12)                  |
| PER      | 140             | -9.91        | 1.10 | 0.96  | 116      | 153. | 140       |                                                      | 109P/Swift-Tuttle                      |
| DSX      | 186             | 1.07         | 0.86 | 0.15  | 22       | 213  | 6         | Link with GEM                                        | 155140 (2005 UD)                       |
| ORI      | 208             | 5.47         | 0.90 | 0.57  | 163      | 84   | 28        | I win of EIA                                         | IP/Halley                              |
| LMI      | 210             | 4.63         | 0.88 | 0.58  | 125      | 96   | 210       |                                                      | C1/39 K1                               |
| UEK      | 227             | 2.63         | 0.80 | 0.52  | 162      | 94   | 4/        |                                                      | ESP/Tempel Tuttle                      |
| LEU      | 237             | 2.52         | 0.61 | 0.98  | 162      | 1/1  | 237       | According to d with CEM                              | 55P/Tempel=Tuttle                      |
| CEM      | 237             | 1.13         | 0.90 | 0.12  | 28       | 330  | 237       | Associated with GEW                                  | 2004 QAZ                               |
| GEIM     | 201             | 1.35         | 0.90 | 0.14  | 23       | 325  | 201       | I will of DLI ?; IIIK WILL DSX?; associated with THA | 5200 Pildilloll<br>D/1017 E1 (Mallich) |
|          | 201             | 0.00         | 0.98 | 0.19  | 32       | 129  | 81<br>96  | Twin of TDP2                                         | D <sub>1</sub> 1917 F1 (WellISII)      |
| UHY      | 200             | 4.82         | 0.92 | 0.41  | 100      | 225  | 80<br>202 | I WIII OF TPK?                                       | SOHO (2005D1)                          |
| JLE      | 282             | 0.54<br>0.10 | 0.99 | 0.05  | 108      | 535  | 282       |                                                      | 2002 4115                              |
| CVN      | 200             | 2.10         | 0.78 | 0.47  | 02       | 222  | 200       |                                                      | C/1975 XI or C/1999 A1                 |
| DCS      | 301             | 2.67         | 0.91 | 0.57  | 55       | 222  | 1235      | Twin of CAP                                          | 169P/NFAT (2002 FX12)                  |

maximum probably related to older ejections and the younger QUA "core" producing the sharp, well-known peak in early January. If truly there is an extension of QUA activity over a full 2 months, it would strongly support the notion that the QUA and 2003 EH1, the probable parent (Jenniskens, 2006), are part of a broader and older stream complex perhaps with 2003 EH1 and 96P/Machholz as members (Babadzhanov and Obrubov, 1992; Jones and Jones, 1993). We note that the NID shower identified is similar to the recently described December Alpha Draconids (IAU 334) (SonotaCo, 2009), though our time of maximum and radiant drift differ significantly.

4. The Daytime Triangulids (DTR) and Omicron Eridanids (OER): these two new showers identified in our survey are both near the limit of our detection criteria, with the DTR lasting only 3 days significantly above background. However, these showers are clearly twin streams which provides an independent check



**Fig. 8.** The radiant drift (top two plots), activity levels (second from bottom) and estimated velocity (bottom plot) for the QUA–NID stream. Note that the "traditional", sharp annual QUA shower lasts from  $\lambda$  = 281° to 285° and is likely the youngest part of the broader QUA complex.

on the reality of our shower selections at these very low activity levels. The apparent link to 1999 VK12 (D' = 0.08) should not be taken as particularly significant as our model (Wiegert and Brown, 2004) suggests a 25% likelihood of chance association at this level with random background NEAs.

- 5. Alpha Capricornids (CAP) and Daytime Chi Capricornids (DCS): Jenniskens (2006) noted that CAP shower having  $\omega = 270^{\circ}$ should have an ascending nodal intersection with the Earth and therefore a detectable Daytime twin stream. Based on older radar data establishing the orbital elements of the DCS shower, he rejected this as a probable twin, though the timing of the shower was approximately correct for the southern CAP twin. Re-examination of our continuous radar survey records, shows a stream peaking about 10 days earlier than is listed for the DCS but with similar velocity, most similar to stream 2.01 in Gartrell and Elford (1975) and the Chi Capricornids given by Sekanina (1973), though the velocity is 3-4 km/s lower. With our significantly revised radiant location and speed relative to the original DCS value from Jenniskens (2006), the orbit is a clear match for the southern twin for the CAP. The characteristics of this new DCS shower, together with those of the CAP provide a strong observational constraint to models for formation and evolution of these streams and linkages to parent bodies.
- 6. November Theta Aurigids (NTA) and Geminids (GEM): our survey algorithm identified an apparently new shower of 1 week duration beginning in mid-November. The shower has very similar characteristics to the Geminids which peaks a month later. Moreover, extension of the radiant drift from the time of the NTA shower maximum produces a predicted radiant (within 95% confidence limits) directly on the GEM radiant. Examining the raw data, it seems likely that this represents an early extension of the GEM shower in our data - the drop off between the end of the NTA and the GEM reflecting again a decrease below our chosen cutoff. Fig. 9 shows the absolute values of the wavelet coefficient at the ecliptic radiant coordinates of the GEM. Our criteria  $(3\sigma above background)$  clearly truncates the full period of detectable activity in our data. To the background activity level, we find the GEM period of activity to extend from  $\lambda = 225^{\circ}$  to  $282^{\circ}$ : or roughly from November 7 to January 2 each year, much longer than the accepted duration of the shower (taken to be from late November/early December to mid-December typically; cf. Jenniskens, 2006; Rendtel and Arlt, 2008). Sekanina (1970), in the only other major radar orbital survey to record large numbers of Geminids, reported a duration from November 30 to December 29. It seems the stream is much broader and longer-lived at smaller radar particle sizes than has previously been appreciated.



Fig. 9. The wavelet coefficient values centered at the location of the Geminid shower maximum (in sun-centered ecliptic coordinates) throughout the year. The horizontal bold line represents the median wavelet values over the year while each successive horizontal line above this level is an additional one standard deviation in the yearly mean activity levels. Note that the ordinate is logarithmic.

7. *The Canum Venaticids and C/1975 X1 (Sato)*: the newly recognized Canum Venaticids show clear activity from January 10 to January 17 using our shower identification algorithm. Examination of the raw wavelet data shows the stream to be visible well above the background until the end of January. The shower has a potential link to C/1975 X1 with the *D'* linkage value being possibly as good as 0.08 given the measurement uncertainty of the shower orbit, making it among the best shower-long period comet links in our survey.

### 6. Conclusions

Using three million individual orbits measured during 7 years of operation of the CMOR radar we have identified 117 meteor showers active for at least 3 days each year through application of a 3D wavelet search algorithm. These streams include 42 of the 45 previously identified major streams from our first survey summarized in paper I. Removing a number of possible duplicate showers we have a lower limit of 109 total streams (42 identified in paper I and at least 62 newly identified streams). We find evidence among these streams for seven "complexes" of showers possibly linked to common progenitor(s) through secular invariants. Among these complexes are seven showers in the SMA complex linked to the Taurids and suggestive that Taurid-related activity occurs over a substantial fraction of the entire year, a point also noted in paper I, lending support to the notion that the Taurid complex as a primary contributor of meteor activity throughout the year. The LLY, SDA, and SZC complexes have radiants lining the sporadic "ring" feature identified in earlier works examining sporadic radiant distributions from CMOR, suggestive of an underlying coherent stream component to this feature which may also provide some constraints for possible physical models of the ring. We have also detected a series of three new showers apparently related to the Ursid stream and possibly 8P/Tuttle; the origin and evolution of the Ursids and 8P/Tuttle should be re-examined in light of these new showers. We caution that the reality of these complexes and specific stream memberships still needs to be more firmly established through dynamical simulations.

We also find much longer than previously reported periods of activity for the Quadrantids (early November–mid-January) and the Geminids (early November–January) at our small radar particle sizes. We emphasize that the 3D wavelet approach used in our study allows detections down to very low activity levels, perhaps explaining why such long activity periods for these showers have not been previously reported. The newly recognized Theta Serpentid shower has the most significant orbital link to an NEA (2008 KP) of any new stream in our survey, suggesting strongly that it may be a relatively recently dormant cometary nucleus.

Finally, among the many new twins and stream branches identified in our shower database is the southern twin for the Alpha Capricornid stream: the characteristics of these two streams together should provide strong constraints for formation models of the common Alpha Capricornid stream.

The next stage in our long-term radar shower survey program will include multi-year fluxes and mass distribution indices for some of the major radar showers. We also intend to examine the handful of unusually strong outbursts lasting for less than 1 day that have occurred over the last 7 years but have not yet studied in detail. The CMOR radar is being upgraded to include three additional outlying stations in the summer of 2009 and it is our expectation that this new CMOR II system will provide higher precision orbits and possibly deceleration data for a large sample of the showers identified in our first two survey papers. It is hoped that this survey program, which has resulted in the identification of a suite of showers from a common dataset using consistent search criteria and ultimately supplemented with physical information (such as bulk densities), will provide the motivation and partial observational basis for theoretical studies of the origin and evolution of some of the many unusual meteor showers documented in this program.

# Acknowledgments

PGB thanks the Canada Research Chair Program, the Natural Sciences and Engineering Research Council and the NASA Meteoroid Environment Office for funding support. The authors gratefully acknowledge the invaluable technical assistance of K. Ellis and Z. Krzeminski in day to day radar operations and ongoing helpful guidance of J. Jones and A.R. Webster. D.J. Asher and V. Porubcan provided very helpful reviews of an earlier version of this work.

#### References

Asher, D.J., 1999. The Leonid meteor storms of 1833 and 1966. Mon. Not. R. Astron. Soc. 307, 919–924.

- Asher, D.J., Clube, S.V.M., 1997. Towards a dynamical history of 'Proto-Encke'. Celest. Mech. Dynam. Astron. 69, 149–170.
- Asher, D.J., Izumi, K., 1998. Meteor observation in Japan: New implications for a Taurid meteoroid swarm. Mon. Not. R. Astron. Soc. 297, 23–27.
- Babadzhanov, P.B., Obrubov, Y., 1992. Evolution of short-period meteoroid streams. Celest. Mech. Dynam. Astron. 54, 111–127.

- Babadzhanov, P.B., Williams, I.P., Kokhirova, G.I., 2008. Near-Earth Objects in the Taurid complex. Mon. Not. R. Astron. Soc. 386, 2271–2277.
- Beech, M., 1990. William Frederick Denning: In quest of meteors. J. R. Astron. Soc. Canada 84, 383–396.
- Brown, P., Jones, J., 1998. Simulation of the formation and evolution of the Perseid meteoroid stream. Icarus 133, 36–68.
- Brown, P., Jones, J., Weryk, R.J., Campbell-Brown, M.D., 2004. The velocity distribution of meteoroids at the Earth as measured by the Canadian Meteor Orbit Radar (CMOR). Earth Moon Planets 95, 617–626.
- Brown, P., Weryk, R.J., Wong, D.K., Jones, J., 2008. A meteoroid stream survey using the Canadian Meteor Orbit Radar. I. Methodology and radiant catalogue. Icarus 195, 317–339.
- Campbell-Brown, M.D., 2008. High resolution radiant distribution and orbits of sporadic radar meteoroids. Icarus 196, 144–163.
- Campbell-Brown, M., Jones, J., 2006. Annual variation of sporadic radar meteor rates. Mon. Not. R. Astron. Soc. 367, 709–716.
- Ceplecha, Z., 1987. Geometric, dynamic, orbital and photometric data on meteoroids from photographic fireball networks. Bull. Astron. Inst. Czechos. 38, 222–234.
- Ceplecha, Z., Borovička, J., Elford, W.G., ReVelle, D.O., Hawkes, R.L., Porubčan, V., Šimek, M., 1998. Meteor phenomena and bodies. Space Sci. Rev. 84, 327–471.
- Chambers, J.E., 1999. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799.
- Drummond, J.D., 1981. A test of comet and meteor shower associations. Icarus 45, 545–553.
- Gartrell, G., Elford, W.G., 1975. Southern hemisphere meteor stream determinations. Aust. J. Phys. 28, 591–620.
- Morbidelli, A., Gladman, B., 1998. Orbital and temporal distributions of meteorites originating in the asteroid belt. Meteor. Planet. Sci. 33, 999–1016.

Graps, A., 1995. An introduction to wavelets. IEEE Comput. Sci. Eng. 2, 50-68.

- Green, D.W.E. 2008. Catalogue of Cometary Orbits 2008, International Astronomical Union Circular 8958.
- Hocking, W.K., Fuller, B., Vandepeer, B., 2001. Real-time determination of meteorrelated parameters utilizing modern digital technology. J. Atmos. Terr. Phys. 63, 155–169.
- Jenniskens, P., 2006. Meteor Showers and their Parent Comets. Cambridge University Press. 790 pp.
- Jenniskens, P., Jopek, T.J., Rendtel, J., Porubcan, V., Spurny, P., Baggaley, J., Abe, S., Hawkes, R., 2009. On how to report new meteor showers. WGN J. Int. Meteor Organ. 37, 19–20.
- Jones, J., 1985. The structure of the Geminid meteor stream. I The effect of planetary perturbations. Mon. Not. R. Astron. Soc. 217, 523–532.
- Jones, W., 1997. Theoretical and observational determinations of the ionization coefficient of meteors. Mon. Not. R. Astron. Soc. 288, 995–1003.
- Jones, J., Brown, P., 1993. Sporadic meteor radiant distributions Orbital survey results. Mon. Not. R. Astron. Soc. 265, 524–532.

- Jones, J., Jones, W., 1993. Comet Machholz and the Quadrantid meteor stream. Mon. Not. R. Astron. Soc. 261, 605–611.
- Jones, J., Brown, P., Ellis, K.J., Webster, A.R., Campbell-Brown, M.D., Krzemenski, Z., Weryk, R.J., 2005. The Canadian Meteor Orbit Radar (CMOR): System overview and preliminary results. Planet. Space Sci. 53, 413–421.
- Jopek, T.J., Valsecchi, G.B., Froeschle, C., 1999. Meteoroid stream identification: A new approach – II. Application to 865 photographic meteor orbits. Mon. Not. R. Astron. Soc. 304, 751–758.
- Kresak, L., Porubcan, V., 1970. The dispersion of meteors in meteor streams. I. The size of the radiant areas. Bull. Astron. Inst. Czechos. 21, 153–170.
- Kronk, G.W., 1999. Cometography: A Catalog of Comets. Ancient 1799, vol. 1. Cambridge University Press, Cambridge. 563 pp.
- Levison, H., 1996. Comet taxonomy. In: Rettig, T.W., Hahn, J.M. (Eds.), Completing the Inventory of the Solar System, Astronomical Society of the Pacific Conference Proceedings, vol. 107, pp. 173–191.
- Molau, S., 2007. How good is the IMO working list of meteor showers? A complete analysis of the IMO video meteor database. In: Proc. Int. Meteor Conf. 2006, International Meteor Organization.
- Rendtel, J., Arlt, R. (Eds.), 2008. Handbook for Meteor Observers. International Meteor Organization, Potsdam. 190 pp.
- Sekanina, Z., 1970. Statistical model of meteor streams. II. Major showers. Icarus 13, 475-493.
- Sekanina, Z., 1973. Statistical model of meteor streams. III. Stream search among 19303 radio meteors. Icarus 18, 253–284.
- SonotaCo, 2009. A meteor shower catalog based on video observations in 2007–2008. WGN: J. Int. Meteor Organ. 37, 55–62.
- Stohl, J., 1986. The distribution of sporadic meteor radiants and orbits. In: Lagerkvist, C.I., Rickman, H., Lindblad, B.A., Lundstedt, H. (Eds.), Asteroids, Comets and Meteors II, Proceedings of the International Meeting, Uppsala, Sweden, June 3–6, 1985, pp. 565–574.
- Valsecchi, G.B., Jopek, T.J., Froeschle, C., 1999. Meteoroid stream identification: A new approach – I. Theory. Mon. Not. R. Astron. Soc. 304, 743–750.
- Verniani, F., 1973. An analysis of the physical parameters of 5759 faint radio meteors. J. Geophys. Res. 78, 8429–8462.
- Webster, A.R., Brown, P.G., Jones, J., Ellis, K.J., Campbell-Brown, M., 2004. Canadian Meteor Orbit Radar (CMOR). Atmos. Chem. Phys. Discuss. 4, 1181– 1201.
- Whipple, F.L., 1940. Photographic meteor studies. III. The Taurid meteor shower. Proc. Am. Phil. Soc. 83, 711–745.
- Wiegert, P., Brown, P., 2004. The problem of linking minor meteor showers to their parent bodies: Initial considerations. Earth Moon Planets 95, 19–26.
- Wiegert, P., Vaubaillon, J., Campbell-Brown, M.D., 2009. A dynamical model of the sporadic meteoroid complex. Icarus 201, 295–310.
- Wisdom, J., Holman, M., 1991. Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538.